Self Studies

Quadratic Equations Test - 30

Result Self Studies

Quadratic Equations Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The roots of the equation are $$lx^2 + nx+n=0$$ are in the ratio $$p:q$$. Then
    Solution
    $$l{ x }^{ 2 }+nx+n=0$$
    Roots are in ratio $$p:q$$
    Let roots be $$ap,aq$$
    $$ap+pq=\cfrac { -n }{ l } ,{ a }^{ 2 }pq=\cfrac { n }{ l } $$
    $$a=\sqrt { \cfrac { n }{ pql }  } $$
    $$\therefore \left( p+q \right) \sqrt { \cfrac { n }{ pql }  } =\cfrac { -n }{ l } $$
    $$\sqrt { \cfrac { n }{ l }  } \left( \cfrac { p+q }{ \sqrt { pq }  }  \right) =-{ \left( \sqrt { \cfrac { n }{ l }  }  \right)  }^{ 2 }$$
    $$\sqrt { \cfrac { p }{ q }  } +\sqrt { \cfrac { q }{ p }  } =-\sqrt { \cfrac { n }{ l }  } $$
    $$\therefore \sqrt { \cfrac { p }{ q }  } +\sqrt { \cfrac { q }{ p }  } +\sqrt { \cfrac { n }{ l }  } =0$$
  • Question 2
    1 / -0
    $$ (x - a)(x - b) + (x - c)(x - a) + (x - c)(x - b) = 0$$ then its roots are 
    Solution
    $$ (x - a)(x - b) + (x - c)(x - a) + (x - c)(x - b) = 0$$ 

    $$\Rightarrow 3x^2 - 2(a + b + c)x + ab + bc + ca = 0$$

    $$D = 4(a + b + c)^2 - 12(ab + bc + ca)$$

    $$D = 4a^2 + 4b^2 + 4c^2+8ab+8bc+8ac - 12(ab + bc + ca)$$

    $$= 4(a^2 + b^2+ c^2 - ab - bc - ca)$$

    $$=2[{ (a-b)^{ 2 } } +{ (b-c)^{ 2 } } +{ (c-a)^{ 2 } } ]\ge 0$$

    So roots are real 
  • Question 3
    1 / -0
    Find the roots of the following quadratic equation by using the quadratic formula
    $$2x^2 - 2\sqrt 2x + 1 = 0$$
    Solution

    The quadratic equation is $$2x^2 - 2\sqrt 2x + 1 = 0$$.
    Comparing it with standard form of quadratic equation $$ax^2+bx+c=0$$,we get $$a=2,b=- 2\sqrt 2,c=1$$ Therefore the roots of the quadratic equation are,
    $$x= \dfrac { -b\pm \sqrt { b^{ 2 }-4ac }  }{ 2a } $$
      $$= \dfrac { -\left( -2\sqrt { 2 }  \right) \pm \sqrt { \left( -2\sqrt { 2 }  \right) ^{ 2 }-4\times 2\times 1 }  }{ 2\times 2 } $$
      $$=\dfrac { \left( 2\sqrt { 2 }  \right) \pm \sqrt { 8-8 }  }{ 4 } $$
      $$=\dfrac { 2\sqrt { 2 } \pm 0 }{ 4 } $$
      $$=\dfrac { 2\sqrt { 2 }  }{ 4 } $$  
      $$=\dfrac { \sqrt { 2 }  }{ 2 } $$ 
      $$=\dfrac{ 1 }{ \sqrt { 2 }  } $$ 

  • Question 4
    1 / -0
    Find the roots of the following quadratic equation by using the quadratic formula
    $$\displaystyle x + \frac{1}{x} = 3, x \neq 0$$
    Solution

    Given, $$x+\dfrac{1}{x}=3$$
    $$\Rightarrow \dfrac{x+1}{x}=3$$
    $$\Rightarrow x^2-3x+1=0$$
    Comparing $$x^2-3x+1=0$$ with $$ax^2+bx+c=0$$, we get $$a=1, b=3. c=14$$
    Now the roots are $$=$$ $$\dfrac { -b \pm \sqrt { b^{ 2 }-4ac }  }{ 2a } $$
    $$=$$ $$\dfrac { -(-3)\pm \sqrt { (3)^ 2-4\times 1\times 1 }  }{ 2\times 1 } $$
    $$=$$ $$\dfrac { 3\pm \sqrt { 9-4 }  }{ 2 }$$
    $$=$$ $$ \dfrac { 3\pm \sqrt { 5 }  }{ 2 }$$
    $$=$$ $$ \dfrac { 3+ \sqrt { 5 }  }{ 2 }$$ or $$\dfrac { 3- \sqrt { 5 }  }{ 2 }$$

  • Question 5
    1 / -0
    Find the roots of the following quadratic equation by using the quadratic formula 
    $$x^2 - 16x + 64 = 0$$
    Solution
    Given equation is $$x^2-16x+6=0$$
    $$\Rightarrow x^{2}-2(8)x+8^{2}=0$$
    This is the case of $$(x-a)^{2}=x^{2}-2ax+a^{2}$$
    Therefore, $$(x-8)^{2}=0$$
    $$\Rightarrow x=8,8$$
  • Question 6
    1 / -0
    Find the roots of the following quadratic equations by using the quadratic formula
    $$\displaystyle \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} = 6\frac{6}{7}, x \neq - 3, 3$$
    Solution
    Given, $$\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}=6\dfrac{6}{7}$$
    $$\Rightarrow (x-3)^{2}-(x+3)^{2}=\dfrac{48}{7}(x+3)(x-3)$$
    $$\Rightarrow 7\left [ \left ( x^{2}-6x+9-x^{2}-6x-9 \right ) \right ]=48\left ( x^{2}-9 \right )$$
    $$\Rightarrow 7(-12x)=48x^{2}-432$$
    $$\Rightarrow 48x^{2}+84x-432=0$$
    $$\Rightarrow 4x^{2}+7x-36=0$$
    $$\Rightarrow 4x^{2}+16x-9x-36=0$$
    $$\Rightarrow 4x(x+4)-9x(x+4)=0$$
    $$\Rightarrow (x+4)(4x-9)=0$$
    $$\Rightarrow  x+4=0$$
    $$\Rightarrow x=-4$$
    $$\Rightarrow  4x-9=0$$
    $$\Rightarrow x=\dfrac{9}{4}=2\dfrac{1}{4}$$
  • Question 7
    1 / -0
    The discrimiant of the quadratic equation $$\displaystyle 3\sqrt{3}x^{2}+10x+\sqrt{3}=0$$ is 
    Solution
    Given equation is:
    $$\displaystyle 3\sqrt{3}x^{2}+10x+\sqrt{3}=0$$
    $$D=b^2-4ac$$
    $$\therefore \displaystyle D=(10)^{2}-4(3\sqrt{3})(\sqrt{3})$$
    $$= 100 - 36$$
    $$= 64$$
  • Question 8
    1 / -0
    Find the solutions of $$3x^2 - 2\sqrt 6x + 2 = 0$$ by the method of completing the squares when $$x$$ is a real number.
    Solution
    Given, $$ 3x^2 - 2\sqrt 6x + 2 = 0$$
    $$\Rightarrow x^2-\dfrac{2\sqrt 6}{3}x=-\dfrac{2}{3}$$
    $$\Rightarrow x^2-\dfrac{2\sqrt 6}{3} x+\left(\dfrac{\sqrt 6}{3}\right)^2=\left(\dfrac{\sqrt 6}{3}\right)^2-\dfrac{2}{3}$$
    $$\Rightarrow  x^{ 2 }-2 x\times \dfrac { \sqrt { 6 }  }{ 3 } +\left(\dfrac { \sqrt { 6 }  }{ 3 } \right)^{ 2 }=\dfrac { 6 }{ 9 } -\dfrac { 2 }{ 3 } $$
    $$\Rightarrow \left(x-\dfrac { \sqrt { 6 }  }{ 3 } \right)^{ 2 }=\dfrac { 6-6 }{ 9 }$$
    $$\Rightarrow x-\dfrac { \sqrt { 6 }  }{ 3 } =0$$
    $$\Rightarrow x=\dfrac { \sqrt { 6 }  }{ 3 }$$
    $$\Rightarrow x=\dfrac { \sqrt { 2 } \times \sqrt { 3 }  }{ \sqrt { 3 } \times \sqrt { 3 }  }$$
    $$\Rightarrow x=\sqrt { \dfrac { 2 }{ 3 }  } $$
  • Question 9
    1 / -0
    Let $$\displaystyle \alpha ,\beta $$ and $$\displaystyle \gamma  $$ be the roots of the equation $$( x-1) \displaystyle (x^{2}+x-3)=0.$$ Then, the value of $$\displaystyle (\alpha +\beta )$$ is 
    Solution
    Roots of the equation are $$1,\dfrac{-1+\sqrt{13}}{2},\dfrac{-1-\sqrt{13}}{2}$$

    As given options are real, we will take 2nd and 3rd roots as $$\alpha, \beta $$

    $$\Rightarrow \alpha +\beta =\dfrac{-1+\sqrt{13}}{2}+\dfrac{-1-\sqrt{13}}{2}$$

    $$\therefore \alpha +\beta =-1$$
  • Question 10
    1 / -0
    If  $$\displaystyle\alpha, \beta $$ are roots of $$\displaystyle ax^{2}-2bx+c=0$$ then $$\displaystyle a^{3}\beta ^{3}+a^{2}\beta ^{2}+a^{3}\beta^2$$ is
    Solution
    The given expression $$\Rightarrow {\alpha}^3{\beta}^3 + {\alpha}^2{\beta}^3 + {\alpha}^3{\beta}^2$$ can be written as $$\Rightarrow (\alpha\beta)^3 + (\alpha\beta)^2 (\alpha + \beta)$$ ....$$(1)$$

    Now as we know that $$\alpha$$ and $$\beta$$ are the roots of the quadrtic equation $$ax^2 -bx +c=0$$

    So sum of the roots $$\alpha + \beta = - \dfrac{ -2b}{a}  = \dfrac{2b}{a}$$

    Also the product of the roots $$\alpha. \beta = \dfrac{c}{a}$$

    By putting the value of the terms $$\alpha + \beta$$ and $$\alpha.\beta$$ into equation $$(1)$$

    We get,  $$\Rightarrow (\alpha\beta)^3 + (\alpha\beta)^2 (\alpha + \beta)$$  $$ = (\dfrac{c}{a})^3 + (\dfrac{c}{a})^2 (\dfrac{2b}{a})$$

    $$\Rightarrow (\alpha\beta)^3 + (\alpha\beta)^2 (\alpha + \beta)$$  $$ = \dfrac{c^2(c +2b)} {a^3}$$

    Hence the Correct option is $$A$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now