Self Studies

Quadratic Equations Test - 31

Result Self Studies

Quadratic Equations Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve $$9m^2-12m+2=0$$ by method of completing square.
    Solution
    $$9m^2-12m+2=0$$
    $$9m^2-12m=-2$$
    Dividing both sides by $$9$$, we get
    $$m^2-\dfrac {12}{9} = \dfrac {-2}{9}$$

    $$m^2-\dfrac {4}{3} = \dfrac {-2}{9}$$

    Third term = $$\left(\dfrac 12 \times \mbox{coefficient of m}\right)^2 $$

    $$=\left (\dfrac 12 \times \dfrac {-4}{3}\right)^2 = \dfrac 49$$

    Adding $$\dfrac 49$$ on both sides, we get

    $$m^2-\dfrac 43 m+ \dfrac 49 = \dfrac {-2}{9} + \dfrac 49$$ 

    $$\left(m-\dfrac 23\right)^2 = \dfrac 29$$

    Taking square roots on both sides we get,

    $$\left(m-\dfrac 23\right) =\pm \dfrac{\sqrt{2}}3$$

    $$m=\dfrac {2+\sqrt 2}{3}$$ or $$m=\dfrac {2-\sqrt 2}{3}$$
  • Question 2
    1 / -0
    The roots of the equation $$\displaystyle x^{2}-px+q=0$$ are consecutive integers. Find the discriminate of the equation.
    Solution
    For the given equation, let the roots be $$ a, a+1 $$

    So sum of roots $$ = a + a + 1 = 2a + 1= -\cfrac {-p}{1}  = p $$

    Product of roots $$ = a \times (a+1) = {a}^{2} + a= \cfrac {q}{1} = q $$

    For an equation $$ a{x}^{2} + bx + c = 0 $$, the discriminant is $$ {b}^{2}
    -4ac$$.

    For the given eqn, the discriminant is $${ (-p)}^{2} -4\times 1 \times q = (2a + 1)^{2}- 4({a}^{2} + a) = 4{a}^{2} + 1 + 4a - 4{a}^{2} -4a = 1 $$
  • Question 3
    1 / -0
    Solve: $$\displaystyle x^{2}+3x+1=0 $$
    Solution
    We have $$\displaystyle x^{2}+3x+1=0$$
    Add and subtract $$\displaystyle \left ( \frac{1}{2}\mbox{coefficient of x} \right )^{2}$$ in LHS and get $$\displaystyle x^{2}+3x+1+\left ( \frac{3}{2} \right )^{2}-\left ( \frac{3}{2} \right )^{2}=0 $$

    $$\displaystyle \Rightarrow x^{2}+2\left ( \frac{3}{2} \right )x+\left ( \frac{3}{2} \right )^{2}-\left ( \frac{3}{2} \right )^{2}+1=0 $$

    $$\displaystyle \Rightarrow \left ( x+\frac{3}{2} \right )^{2}-\frac{5}{4}=0 $$

    $$\displaystyle \Rightarrow \left ( x+\frac{3}{2} \right )^{2}=\left ( \frac{\sqrt{5}}{2} \right )^{2}$$

    $$\displaystyle \Rightarrow x+\frac{3}{2}=\pm \frac{\sqrt{5}}{2}$$

    This gives $$\displaystyle x=\frac{-3+\sqrt{5} }{2}$$ or $$x=\dfrac{-3-\sqrt{5}}{2}$$

    Therefore, $$\displaystyle x=\frac{-3+\sqrt{5}}{2},\frac{-3-\sqrt{5}}{2}$$ are the solutions of the given equation
  • Question 4
    1 / -0
    If $$\displaystyle l^{2}+m^{2}+n^{2}=5,$$ then (Im+mn+In) is 
    Solution
    We know that

    $$ {(l+m+n)}^{2} = {l}^{2} + {m}^{2} + {n}^{2} + 2(lm+mn+ln) $$
    $$ => {(l+m+n)}^{2} = 5 + 2(lm+mn+ln) $$

    We know that $$ {(l+m+n)}^{2} $$ will be a value greater than or equal to zero

    $$ => {(l+m+n)}^{2} \ge 0 $$
    $$ => 5 + 2(lm+mn+ln) \ge 0 $$
    $$ => (lm+mn+ln) \ge =\frac {5}{2} $$
  • Question 5
    1 / -0
    Find the discriminant of $$\displaystyle { x }^{ 2 }-5x-10=0$$
    Solution
    Discriminant is given as:
    $$\displaystyle D={ b }^{ 2 }-4ac$$
    $$\implies D={ \left( -5 \right)  }^{ 2 }-4\left( -10 \right) $$
    $$\displaystyle =25+40$$
    $$\displaystyle =65$$
  • Question 6
    1 / -0
    Which of the following is not a quadratic equation
    Solution
    Lets, simplify all the equations given in options and convert them to standard forms,

    (A) $$\displaystyle x-\frac { 3 }{ 2x } =5$$
    Now,
    $$\displaystyle x-\frac { 3 }{ 2x } =5$$

    $$\Rightarrow \displaystyle \frac {2x^2 - 3 }{ 2x } =5$$

    $$\Rightarrow \displaystyle 2x^2 - 3 =10x$$

    $$\Rightarrow \displaystyle 2x^2 -10x- 3 =0$$

    The highest power of variable $$x$$ is $$2$$. So, it is an quadratic equation.

    (B) $$\displaystyle 4x-\frac { 5 }{ 8 } =x^2$$
    Now,
    $$\displaystyle 4x-\frac { 5 }{ 8 } =x^2$$

    $$\Rightarrow \displaystyle \frac {32x - 5 }{ 8 } =x^2$$

    $$\Rightarrow \displaystyle 32x - 5 =8x^2$$

    $$\Rightarrow \displaystyle 8x^2 -32x +5 =0$$

    The highest power of variable $$x$$ is $$2$$. So, it is a quadratic equation.

    (C) $$\displaystyle x+\frac { 1 }{ x } =9$$
    Now,
    $$\displaystyle x+\frac { 1 }{ x } =9$$

    $$\Rightarrow \displaystyle \frac {x^2 + 1 }{ x } =9$$

    $$\Rightarrow \displaystyle x^2 + 1 =9x$$

    $$\Rightarrow \displaystyle x^2 -9x+ 1 =0$$

    The highest power of variable $$x$$ is $$2$$. So, it is a quadratic equation.

    (D) $$\displaystyle 4x-\frac { 2 }{ 3x } =4x^2$$
    Now,
    $$\displaystyle 4x-\frac { 2 }{ 3x } =4x^2$$

    $$\Rightarrow \displaystyle \frac {12x^2 - 2 }{ 3x } =4x^2$$

    $$\Rightarrow \displaystyle 12x^2 - 2 =12x^3$$

    $$\Rightarrow \displaystyle 12x^3 -12x^2+2 =0$$

    $$\Rightarrow \displaystyle 6x^3 -6x^2+1 =0$$

    Here, the highest power of variable $$x$$ is $$3$$. So, it is not a quadratic equation.

    Hence, $$Op-D$$ is correct.
  • Question 7
    1 / -0
    When solved using the quadratic formula, the solutions to the equation $$3x^{2} - 4x - 6 = 0$$, rounded to the nearest hundredth, are

    Solution
    $$\Rightarrow$$  Given quadratic equation is $$3x^2-4x-6=0$$, comparing it with $$ax^2+bx+c=0$$
    $$\Rightarrow$$  We get, $$a=3,\,b=-4,\,c=-6$$
    $$\Rightarrow$$  $$x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$$

             $$=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(3)(-6)}}{2(3)}$$

             $$=\dfrac{4\pm\sqrt{16+72}}{6}$$

             $$=\dfrac{4\pm\sqrt{88}}{6}$$

             $$=\dfrac{4\pm2\sqrt{22}}{6}$$

             $$=\dfrac{2\pm\sqrt{22}}{3}$$

             $$=\dfrac{2\pm4.69}{3}$$

    $$\Rightarrow$$  $$x=\dfrac{2+4.69}{3}$$ and $$x=\dfrac{2-4.69}{3}$$

    $$\therefore$$  $$x=2.23$$ and $$x=-0.90$$
  • Question 8
    1 / -0
    Solve $$x^2+8x+15=0$$ by method of completing square.
    Solution
    Given: 
    $$x^{2}+8x+15=0$$
    $$x^{2}+8x=-15$$
    Add $$16$$ on both sides,
    $$x^{2}+8x+16=-15+16$$
    $$x^{2}+2\times4x+4^{2}=1$$
    $$(x+4)^{2}=1$$
    $$x+4=\pm1$$
    Hence, $$x=-4+1=-3$$ or $$x=-4-1=-5$$
  • Question 9
    1 / -0
    Given that $${ z }^{ 2 }-10z+25=9$$, what is $$z$$?
    Solution

    Since you recognize that the left hand side of the equation is a perfect square quadratic, you will factor the left side of the equation first, instead of trying to set everything equal to $$0$$
    $${ z }^{ 2 }-10z+25=9$$
    $${(z-5)}^{2}=9$$
    $$\implies z-5=\pm 3$$
    $$\implies z=5\pm 3$$
    $$\therefore z= 2$$ or $$z=8$$
  • Question 10
    1 / -0
    If $$\displaystyle xy\neq 0$$ and $$\displaystyle { x }^{ 2 }{ y }^{ 2 }-xy=6$$, which of the following could be y in terms of x ?
    I. $$\displaystyle \frac { 1 }{ 2x } $$
    II. $$\displaystyle -\frac { 2 }{ x } $$
    III. $$\displaystyle \frac { 3 }{ x } $$
    Solution
    Solving the quadratic in y
    $$ x^2y^2 -xy - 6 = 0$$
    $$\rightarrow$$ y = $$\cfrac{x +/- \sqrt {x^2 + 24x^2}}{2x^2}$$
    $$\rightarrow$$ y = ($$x$$ +/- $$5x$$)/(2$$x^2$$)
    y =  $$\cfrac{3}{x}$$ or y =   $$\cfrac{-2}{x}$$
    Option E.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now