Lets, simplify all the equations given in options and convert them to standard forms,
(A) $$\displaystyle x-\frac { 3 }{ 2x } =5$$
Now,
$$\displaystyle x-\frac { 3 }{ 2x } =5$$
$$\Rightarrow \displaystyle \frac {2x^2 - 3 }{ 2x } =5$$
$$\Rightarrow \displaystyle 2x^2 - 3 =10x$$
$$\Rightarrow \displaystyle 2x^2 -10x- 3 =0$$
The highest power of variable $$x$$ is $$2$$. So, it is an quadratic equation.
(B) $$\displaystyle 4x-\frac { 5 }{ 8 } =x^2$$
Now,
$$\displaystyle 4x-\frac { 5 }{ 8 } =x^2$$
$$\Rightarrow \displaystyle \frac {32x - 5 }{ 8 } =x^2$$
$$\Rightarrow \displaystyle 32x - 5 =8x^2$$
$$\Rightarrow \displaystyle 8x^2 -32x +5 =0$$
The highest power of variable $$x$$ is $$2$$. So, it is a quadratic equation.
(C) $$\displaystyle x+\frac { 1 }{ x } =9$$
Now,
$$\displaystyle x+\frac { 1 }{ x } =9$$
$$\Rightarrow \displaystyle \frac {x^2 + 1 }{ x } =9$$
$$\Rightarrow \displaystyle x^2 + 1 =9x$$
$$\Rightarrow \displaystyle x^2 -9x+ 1 =0$$
The highest power of variable $$x$$ is $$2$$. So, it is a quadratic equation.
(D) $$\displaystyle 4x-\frac { 2 }{ 3x } =4x^2$$
Now,
$$\displaystyle 4x-\frac { 2 }{ 3x } =4x^2$$
$$\Rightarrow \displaystyle \frac {12x^2 - 2 }{ 3x } =4x^2$$
$$\Rightarrow \displaystyle 12x^2 - 2 =12x^3$$
$$\Rightarrow \displaystyle 12x^3 -12x^2+2 =0$$
$$\Rightarrow \displaystyle 6x^3 -6x^2+1 =0$$
Here, the highest power of variable $$x$$ is $$3$$. So, it is not a quadratic equation.
Hence, $$Op-D$$ is correct.