Self Studies

Quadratic Equations Test - 38

Result Self Studies

Quadratic Equations Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given $$\alpha $$ and $$\beta $$ are the roots of the equation $${x^2} - 4x + k = 0(k \ne 0)$$. If $$\alpha \beta ,\ \alpha {\beta ^2} + {\alpha ^2}\beta ,\ {\alpha ^3} + {\beta ^3}$$ are in geometric progression then the value of $$'k'$$ equals
    Solution
    If $$ax^2+bx+c=0 $$ is a quadratic equation, then the relation between it's roots is given as :
    Sum of the roots :  $$\displaystyle  \alpha +\beta =\frac{-b}{a} $$
    Product of the roots:  $$\displaystyle  \alpha \beta =\frac{c}{a} $$
    $$\begin{array}{l}{x^2} - 4x + k = 0\\\alpha  + \beta  = 4\\\alpha \beta  = k\\\alpha \beta ,\alpha {\beta ^2} + {\alpha ^2}\beta ,{\alpha ^3} + {\beta ^3},are,in,GP\\ \Rightarrow {\left( {\alpha {\beta ^2} + {\alpha ^2}\beta } \right)^2} = \alpha \beta \left( {{\alpha ^3} + {\beta ^3}} \right)\\ \Rightarrow [{\alpha \beta}(\alpha + \beta)]^2 = \alpha \beta(\alpha  + \beta )({\alpha ^2} - \beta \alpha  + {\beta ^2})\\ \Rightarrow k^2(16) = k \cdot 4\left[ {{{(\alpha  + \beta )}^2} - 3\alpha \beta } \right] \end{array}$$
    $$ \Rightarrow 4k = 16 - 3k\\ \Rightarrow k = \dfrac{{16}}{7}$$
  • Question 2
    1 / -0
    The value of $$\sqrt {6 + \sqrt {6 + \sqrt {6 +  \ldots  \ldots  \ldots  \ldots \infty } } } $$ is 
    Solution
    Let $$\sqrt {6+\sqrt{6+\sqrt{6 +..........................\infty }}} = x$$

    $$\therefore \sqrt {6+x} = x$$

    $$6+x = x^2 $$
    $$x^2 -x-6 = 0$$
    $$(x-3)(x+2) = 0\implies x = 3$$ as x can only be positive.
  • Question 3
    1 / -0
    The equation $$ 2 sin^2 x-(p+3) sin x+2p-2=0 $$ posses a real solution, if :
    Solution
    $$2sin^2x -(p+3) sinx + 2p-2 = 0$$
    Using quadratic formula-

    $$ sinx = \cfrac{p+3 \pm \sqrt{(p+3)^2 - 4*8*2(p-1)}}{4}$$

             $$ = \cfrac{p+3 \pm \sqrt{(p+3)^2 - 64(p-1)}}{4}$$ for this to be real 


    $$\therefore (p+3)^2 - 64(p-1) \geq 0$$

    $$\Rightarrow p^2 -58p-73 \geq 0$$

    $$\Rightarrow (p-29-16\sqrt3)(p-29+16\sqrt3) \geq 0$$

    Hence, either $$p \leq 29-16\sqrt3$$ or $$ p \geq 29+16\sqrt3$$

    $$0 \leq p \leq 1$$

  • Question 4
    1 / -0
    Solve by the method of completing the square $$5x^2 - 6x - 2 = 0$$
    Solution

    $$\\5x^2-6x-2=0\\x^2-(\frac{6}{5})x-(\frac{2}{5})=0\\(x-(\frac{3}{5}))^2-(\frac{3}{5})^2-(\frac{2}{5})=0\\(x-(\frac{3}{5}))^2-(\frac{9}{25})-(\frac{2}{5})=0\\(x-(\frac{3}{5}))^2=(\frac{9+10}{25})\\(x-(\frac{3}{5}))=\pm \sqrt {(\frac{19}{25})}\\x=(\frac{3}{5})\pm \sqrt {(\frac{19}{25})}\therefore x=(\frac{3+\sqrt{19}}{5})or(\frac{3-\sqrt{19}}{5})$$

  • Question 5
    1 / -0
    Let $$f\left( x \right) ={ x }^{ 3 }+a{ x }^{ 2 }+bx+5\sin ^{ 2 }{ x } $$ be an increasing function in the in the set of real numers $$R$$.Then $$a$$ and $$b$$ satisfy the condition.
    Solution
    $$f(x)=x^3+ax^2+bx+5\sin^2x$$

    Given  that $$f(x)$$ is incresing on $$R$$

    Therefore, $$\rightarrow f'(x)\geq0$$

    $$\Rightarrow f'(x)=3x^2+2ax+b+10\sin x\cos x$$

    $$\Rightarrow f'(x)=3x^2+2ax+b+5\sin 2x\geq 0$$

    For roots to exist, $$\Delta\geq 0$$

    Thereore, $$\Rightarrow(2a)^2-4(3)(b+5\sin2x)\geq 0 $$

    $$\Rightarrow 4a^2-4(3)(b+5\sin2x)\geq 0$$

    $$\Rightarrow a^2-3b-15\sin2x \geq 0$$

    Maximum value of $$\sin2x=1$$

    Therefore,$$\Rightarrow a^2-3b-15 \geq 0$$
  • Question 6
    1 / -0
    If $$\alpha $$ and $$\beta $$ are the roots of equation $${x^2} - 3x + 1 = 0$$ and $${a_n} = {\alpha ^n} + {\beta ^n},n \in N$$ then the value of $$\dfrac{{{a_7} + {a_5}}}{{{a_6}}}$$
    Solution
    $$x^{2}-3x+1= 0 \rightarrow \alpha , \beta $$ are roots $$\alpha \beta = 1 , \alpha + \beta =3$$.
    $$a_{n}= \alpha^{n}+ \beta^{n}.$$
    $$\dfrac{a_{7}+a_{5}}{a_{6}}= \dfrac{\alpha^{7}+ \beta^{7}+ \alpha^{5}+ \beta^{5}}{\alpha^{6}+ \beta^{6}}$$
    $$=\dfrac{\alpha}{1+ \left( \dfrac{\beta}{ \beta} \right)^{6}} + \dfrac{\beta}{ \left(1+ \left( \dfrac{\beta}{\alpha} \right)^{6}  \right) } \dfrac{1}{\alpha \left(1 \left( \dfrac{\beta}{\alpha} \right)^{6} \right)} + \dfrac{1}{\beta  \left( 1+ \left( \dfrac{\alpha}{\beta} \right)^{6} \right)}$$
    $$\dfrac{\alpha}{ \beta} = \dfrac{\beta}{\alpha } =1$$
    $$= \dfrac{\alpha}{2}+ \dfrac{\beta}{2} + \dfrac{1}{2 \alpha} + \dfrac{1}{2 \beta}$$
    $$=\dfrac{3}{2}+ \dfrac{\alpha + \beta}{2 \alpha \beta}$$
    $$=\dfrac{3}{2}+ \dfrac{3}{2}$$
    $$=3$$
    $$C$$ is correct.
  • Question 7
    1 / -0
    The sum of the roots of the quadratic $$5x^{2}-6x+1=0$$ is
    Solution

    Consider the following equation.

      $$ 5{{x}^{2}}-6x+1=0 $$

     $$ x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} $$

     $$ =\dfrac{\left( -6 \right)\pm \sqrt{36-20}}{10} $$

     $$ =\left( -\dfrac{1}{5}, -1 \right) $$

    $$Sum = (-\dfrac{1}{5})+ (-1) = $$ $$(-\dfrac{6}{5})$$

    Option A, It  is the correct option.

    Hence, This is the required answer.

     

     

  • Question 8
    1 / -0
    If one root of $$2x^{2}+kx+1=0$$ is $$\dfrac{1}{2}$$, then the value of $$k$$ is ____.
    Solution

    Given equation is:

    $$2{{x}^{2}}+kx+1=0.....(1)$$


    It is given that,

    $$x=\dfrac{1}{2}$$ is a root of the given equation.


    Putting $$x=\dfrac{1}{2}$$ in $$(1)$$,

    $$\Rightarrow 2\times{{\left( \dfrac{1}{2} \right)}^{2}}+k\times\dfrac{1}{2}+1=0 $$

    $$\Rightarrow 2\times\dfrac{1}{4}+k\times\dfrac{1}{2}+1=0 $$

    $$\Rightarrow \dfrac{1}{2}+k\times\dfrac{1}{2}+1=0 $$

    $$\Rightarrow \dfrac{k}{2}+\dfrac{3}{2}=0 $$

    $$\Rightarrow \dfrac{k}{2}=-\dfrac{3}{2} $$

    $$\Rightarrow k=-3 $$

    Hence, the value of $$k$$ is $$-3.$$

     

  • Question 9
    1 / -0
    If $$\alpha,\beta$$ are the roots of $${x}^{2}-x+1=0$$ then $$\cfrac { { \left( { \alpha  }^{ 2 }-\alpha  \right)  }^{ 3 }+{ \left( { \beta  }^{ 2 }-\beta  \right)  }^{ 3 } }{ \left( 2-\alpha  \right) \left( 2-\beta  \right)  } $$ is equal to
    Solution
    $$\alpha ,\beta $$ are the roots of $$x^{2}-x+1=0$$
    $${\alpha}^{2}-\alpha+1=0\implies {\alpha}^{2}-\alpha=-1$$
    $${\beta}^{2}-\beta+1=0\implies {\beta}^{2}-\beta=-1$$
    $$\alpha+\beta=1,{\alpha}{\beta}=1$$
    $$(2-\alpha)(2-\beta)=4-2(\alpha+\beta)+\alpha\beta=4-2+1=3$$
    $$\dfrac{({\alpha}^{2}-\alpha)^{3}+({\beta}^{2}-\beta)^{3}}{(2-\alpha)(2-\beta)}=\dfrac{(-1)^{3}+(-1)^{3}}{3}=-\dfrac{2}{3}$$
  • Question 10
    1 / -0
    The roots of  $$a{x^2} + bx + c = 0$$ where $$a \ne 0$$ and coefficients are real and $$a+c <b$$, then
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now