Self Studies

Quadratic Equations Test - 39

Result Self Studies

Quadratic Equations Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the roots of the following equations, if they exist, by the completing the square:
    Solution
    $$so\quad the\quad root\quad of\quad quadratic\quad equation\quad are\quad$$ $$X=3\quad and\quad X=\dfrac { 1 }{ 2 } $$
  • Question 2
    1 / -0
    Find the root of the following quadratic equation, if they exist, by the method of completing the square.
    $$2x^2+x-4=0$$.
  • Question 3
    1 / -0
    The root of $$x^{2}+kx+k=0$$ are real and equal , find $$k$$.
    Solution
    The roots of $$x^2 + kx + k = 0$$ are real and equal

    i.e., $$b^2 - 4ac = 0$$

    $$\implies k^2 - 4(1)k = 0$$

    $$\implies k^2 - 4k = 0$$

    $$\implies k(k - 4) = 0$$

    $$\therefore k = 0 $$ or $$4$$


  • Question 4
    1 / -0
    Identify the standard form of the given equation$$(4x-5)(4x+5)=0$$.
    Solution
    $$ (4x+5)(4x-5) = 0$$
    $$ 4x(4x-5)+5(4x-5) = 0$$
    $$ 16x^2-20x+20x-25 = 0$$
    $$ 16x^2-25 =0 $$ which is in standard form of quadratic equation

  • Question 5
    1 / -0
    If both roots of quadratic equation $$(\alpha +1)x^{2}-2(1+3\alpha )x+1+8\alpha =0$$ are real and distinict, the $$\alpha$$ be- 
    Solution
    $$\left( \alpha + 1 \right) {x}^{2} - 2 \left( 1 + 3 \alpha \right) x + 1 + 8 \alpha = 0$$
    Here,
    $$a = \alpha + 1$$
    $$b = - 2 \left( 1 + 3 \alpha \right)$$
    $$c = 1 + 8 \alpha$$
    If both roots are real and distinct,
    $$D > 0$$
    $$\Rightarrow {b}^{2} - 4ac > 0$$
    $$\Rightarrow {\left( - 2 \left( 1 + 3 \alpha \right) \right)}^{2} - 4 \left( 1 + \alpha \right) \left( 1 + 8 \alpha \right) > 0$$
    $$\Rightarrow 4 \left( 1 + 9 {\alpha}^{2} + 6 \alpha \right) - 4 \left( 1 + 9 \alpha + 8 {\alpha}^{2} \right) > 0$$
    $$\Rightarrow 4 \left( 1 + 9 {\alpha}^{2} + 6 \alpha - 1 - 9 \alpha - 8 {\alpha}^{2} \right) > 0$$
    $$\Rightarrow {\alpha}^{2} - 3 \alpha > 0$$
    $$\Rightarrow \alpha \left( \alpha - 3 \right) > 0$$
    $$\Rightarrow \alpha \in \left( - \infty, 0 \right) \cup \left( 3, \infty \right)$$
    Hence among the given values, $$\alpha$$ will be $$-2$$.
    Hence the correct answer is $$\left( A \right) -2$$.
  • Question 6
    1 / -0
    If $$a,b,c,x$$ are real numbers and $$\left( { a }^{ 2 }+{ b }^{ 2 } \right) { x }^{ 2 }-2b\left( a+c \right) x+\left( { b }^{ 2 }+{ c }^{ 2 } \right) =0$$ has real & equal roots, then $$a,b,c$$ are in 
    Solution
    Since $$(a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0$$ has real & equal roots.
    $$\therefore$$ $$4b^2(a^2+c^2+2ac)-4(a^2+b^2)(b^2+c^2)=0$$
    $$4b^2a^2+4b^2c^2+8acb^2-4a^2b^2-4a^2c^2-4b^2-4b^2c^2=0$$
    $$8acb^2-4a^2c^2+4b^4=0$$
    $$(2ac-2b^2)^2=0$$
    $$\boxed{ac=b^2}$$
  • Question 7
    1 / -0
    Roots of the equation $$\sqrt {\dfrac {x}{1-x}}+\sqrt {\dfrac {1-x}{x}}=2\dfrac {1}{6}$$ are
    Solution
    $$\sqrt{\dfrac{x}{1-x}}+\sqrt{\dfrac{1-x}{x}}=2\dfrac{1}{6}$$

    $$\Rightarrow$$  $$\sqrt{\dfrac{x}{1-x}}+\sqrt{\dfrac{1-x}{x}}=\dfrac{13}{6}$$

    $$\Rightarrow$$  $$\left(\sqrt{\dfrac{x}{1-x}}+\sqrt{\dfrac{1-x}{x}}\right)^2=\left(\dfrac{13}{6}\right)^2$$

    $$\Rightarrow$$  $$\left(\sqrt{\dfrac{x}{1-x}}\right)^2+\left(\sqrt{\dfrac{1-x}{x}}\right)^2+2\times \sqrt{\dfrac{x}{1-x}}\times \sqrt{\dfrac{1-x}{x}}=\dfrac{169}{36}$$

    $$\Rightarrow$$  $$\dfrac{x}{1-x}+\dfrac{1-x}{x}+2=\dfrac{169}{36}$$

    $$\Rightarrow$$  $$\dfrac{x^2+1+x^2-2x}{x-x^2}+\dfrac{2x-2x^2}{x-x^2}=\dfrac{169}{36}$$

    $$\Rightarrow$$  $$36(1)=169(x-x^2)$$
    $$\Rightarrow$$  $$36=169x-169x^2$$
    $$\Rightarrow$$  $$169x^2-169x+36=0$$
    $$\Rightarrow$$  $$169x^2-117x-52x+36=0$$
    $$\Rightarrow$$  $$13x(13x-9)-4(13x-9)=0$$
    $$\Rightarrow$$  $$(13x-9)(13x-4)=0$$
    $$\Rightarrow$$  $$13x-9=0$$ and $$13x-4=0$$
    $$\therefore$$  $$x=\dfrac{9}{13}$$ and $$x=\dfrac{4}{13}$$
  • Question 8
    1 / -0
    Let $${ \lambda  }_{ 1 }$$ and $${\lambda}_{2}$$ be two values of $${\lambda}$$ for which the expression $${x}^{2}+(2-\lambda)x+\lambda-{3}$$ becomes a perfect square. The value of $$(\lambda_{1}^{2}+\lambda_{2}^{2})$$ equals
    Solution

  • Question 9
    1 / -0
    The discriminant of the quadratic equation $$5 x ^ { 2 } - 6 x + 1 = 0$$ is
    Solution
    The given quadratic equation is $$5x^2-6x+1=0$$  is in the form of  $$ax^2+bx+c$$
    by comparing $$a=5, b=-6, c=1$$

    Now, Discriminant  $$D=b^2-4ac$$

    $$D=36-4\times 5 \times 1$$

    $$D=36-20=16$$
  • Question 10
    1 / -0
    $$\begin{array} { l } { \text { If } \alpha , \beta \text { are the roots of } a x ^ { 2 } + b x + c  \text { and } \alpha + h } , { \beta + h \text { are the roots of } p x ^ { 2 } + q x + r = 0 }  \\{ \text { and } D _ { 1 } \text { , } D _ { 2 } \text { are the respective } }  { \text { discriminants of these equations, } } \\  { \text { then } D _ { 1 } : D _ { 2 } = } \end{array}$$
    Solution
    Let $$A=\alpha+h$$ and $$B=\beta+h$$

    Then,$$A-B=\left(\alpha+h\right)-\left(\beta+h\right)$$

    $$\Rightarrow\,A-B=\alpha-\beta$$

    $$\Rightarrow\,{\left(A-B\right)}^{2}={\left(\alpha-\beta\right)}^{2}$$

    $$\Rightarrow\,{\left(A+B\right)}^{2}-4AB={\left(\alpha+\beta\right)}^{2}-4\alpha\beta$$

    $$\Rightarrow\,\dfrac{{b}^{2}}{{a}^{2}}-\dfrac{4c}{a}=\dfrac{{q}^{2}}{{p}^{2}}-\dfrac{4r}{p}$$

    $$\Rightarrow\,\dfrac{{b}^{2}-4ac}{{a}^{2}}=\dfrac{{q}^{2}-4rp}{{p}^{2}}$$

    $$\Rightarrow\,\dfrac{{D}_{1}}{{a}^{2}}=\dfrac{{D}_{2}}{{p}^{2}}$$

    $$\Rightarrow\,\dfrac{{D}_{1}}{{D}_{2}}=\dfrac{{a}^{2}}{{p}^{2}}$$

    Hence $${D}_{1}:{D}_{2}={a}^{2}:{p}^{2}=\dfrac{{a}^{2}}{{p}^{2}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now