Self Studies

Quadratic Equations Test - 43

Result Self Studies

Quadratic Equations Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$1$$ is a root of the equations $$ay^2$$ + $$ay + 3 = 0$$ and $$y^2$$+ $$y + b = 0$$, then find the value of $$ab$$
  • Question 2
    1 / -0
    The ratio of the roots of the equation $$ { ax }^{ 2 }+bx+c=0$$ is same as the ratio of the roots of equation $$ { px }^{ 2 }+qx+r=0$$. If $$ { D }_{ 1 }$$ and $$ { D }_{ 2 }$$ are the discriminants of   $$ { ax }^{ 2 }+bx+c=0$$  and $$ { px }^{ 2 }+qx+r=0$$ respectively, then $$ { D }_{ 1 }:{ D }_{ 2 }=$$
    Solution
    $$\textbf{Step 1: Using quadratic formula,}$$
     
                    $$\boldsymbol{x=\dfrac{-b\pm\sqrt{D}}{2a}}$$

              $$ax^2+bx+c=0$$

                    $$x=\dfrac{-b\pm\sqrt{D_1}}{2a}$$ $$[\text{   Using Quadratic Formula }]$$

               $$px^2+qx+r=0$$

                     $$x=\dfrac{-q\pm\sqrt{D_2}}{2a}$$ $$[\text{   Using Quadratic Formula }]$$

          $$\text{As per given question, We have }$$

                   $$\dfrac{-b+\sqrt{D_1}}{-b-\sqrt{D_1}}=\dfrac{-q+\sqrt{D_2}}{-q-\sqrt{D_2}}$$

    $$\textbf{Step 2: Using Componendo and Dividendo, we get}$$

                   $$\dfrac{-\sqrt{D_1}}{b}=\dfrac{-\sqrt{D_2}}{q}$$

         $$\text{On squaring both side}$$

                   $$\dfrac{D_1}{b^2}=\dfrac{D_2}{q^2}$$

              $$\Rightarrow \dfrac{D_1}{D_2}=\dfrac{b^2}{q^2}$$
  • Question 3
    1 / -0
    Let $$a, b, c$$ be the lengths of sides of a scalene triangle. If the roots of the equation $$\displaystyle x^{2}+2(a+b+c)x+3\lambda (ab+bc+ca)=0$$ $$(\lambda \in R)$$ are real then
    Solution
    Since roots of given quadratic are real, $$D \geq 0$$
    $$\Rightarrow (a+b+c)^2-3\lambda(ab+bc+ca) \geq 0$$
    $$\Rightarrow \lambda \leq \cfrac{1}{3} \cfrac{(a+b+c)^2}{ab+bc+ca}=\cfrac{2}{3}+\cfrac{1}{3}\cfrac{a^2+b^2+c^2}{ab+bc+ca}$$
    Given $$a,b,c$$ are sides of triangle $$\Rightarrow a+b>c\Rightarrow ac+bc>c^2$$
    Similarly, $$ab+bc> b^2$$ and $$ca+ab> a^2$$
    Using these $$a^2+b^2+c^2<2(ab+bc+ca)$$
    Hence, $$\lambda < \cfrac{2}{3}+\cfrac{2}{3}=\cfrac{4}{3}$$.
  • Question 4
    1 / -0
    The equation $$\sqrt {2x-2x^2-5}=x^2-2x-3$$, where $$x$$ is real has 
    Solution
    Let us consider the expression, $$2x-2x^2-5$$.
    $$\Delta = 2^2 - 4(-2)(-5) $$
    $$\Delta = 4 - 40 $$
    $$\Delta = -36 < 0 $$
    The coefficient of $$x^2$$ is negative. Hence the expression is negative for all $$x$$. 
    Hence, the term inside the square root is always negative. So, there are no real roots for the equation. 
  • Question 5
    1 / -0
    If $${ x }^{ 2 }-\left( a+b+c \right) x+\left( ab+bc+ca \right) =0$$ has non real roots, where $$a,b,c\in { R }^{ + }$$, then $$\sqrt { a } ,\sqrt { b } ,\sqrt { c } $$
    Solution
    $$b^{2}-4ac<0$$
    Or 
    $$(a+b+c)^{2}-4(ab+bc+ac)<0$$
    $$a^{2}+b^{2}+c^{2}-2ab-2bc-2ac<0$$
    $$(a-b-c)^{2}-4bc<0$$
    or 
    $$(a-b-c)^{2}<4bc$$

    $$(a-b-c)<2\sqrt{b}\sqrt{c}$$

    $$a<b+c+2\sqrt{b}\sqrt{c}$$

    $$a<(\sqrt{b}+\sqrt{c})^{2}$$

    Or 
    $$\sqrt{a}^{2}<(\sqrt{b}+\sqrt{c})^{2}$$

    $$\sqrt{a}<\sqrt{b}+\sqrt{c}$$
    Hence sum of two sides is greater than the third side.
    Hence a triangle can be formed with sides $$\sqrt{a},\sqrt{b},\sqrt{c}$$.
  • Question 6
    1 / -0
    The value of $$x^2-6x+13$$ can never be less than
    Solution
    $$\because x^2-6x+13=x^2-6x+9+4$$
    $$=(x-3)^2+4\ge4$$
    because $$(x-3)^2$$ can never be less than zero
    $$\therefore$$ least value of $$x^2-6x+13=4$$
  • Question 7
    1 / -0
    On solving $$4x^2 - 4a^2x + (a^4 - b^4)$$ = 0 we get value of $$x$$ is equal to
    Solution
    On comparing the equation with $$Ax^2+Bx+C = 0$$,
    We get, $$A = 4, B = -4a^2, C = a^4-b^4$$
    = $$B^2 - 4AC$$ =$$ (-4a^2)^2$$ $$-$$ 4*4*$$(a^4 - b^4)$$
       = $$ 16a^4 - 16a^4 + 16b^4 $$= $$16b^4$$

    $$ x = \displaystyle\frac{- B \pm\sqrt D}{2A}$$ = $$\displaystyle\frac{- 4(-4a^2)\pm\sqrt {16b^4}}{2 \times 4}$$

     = $$\displaystyle\frac {4a^2\pm4b^2}{8}$$ = $$\displaystyle\frac {a^2 + b^2}{2}$$ or $$\displaystyle\frac {a^2 - b^2}{2}$$ 

  • Question 8
    1 / -0
    If $$\alpha, \beta$$ are the roots of $$\displaystyle ax^{2}+2bx+c=0$$ and that of $$\displaystyle Ax^{2}+2Bx+C=0$$ be $$\displaystyle \alpha+\delta, \beta +\delta $$ then the value of $$\displaystyle \frac{b^{2}-ac}{B^{2}-AC} $$ is
    Solution
    $$\Rightarrow$$  $$\alpha$$ and $$\beta$$ are the roots of quadratic equation $$ax^2+2bx+c=0$$.              
    $$\Rightarrow$$  $$\alpha\beta=\dfrac{c}{a}$$         ----- ( 1 )
    $$\Rightarrow$$  $$\alpha+\beta=\dfrac{-2b}{a}$$
    $$\Rightarrow$$  $$(\alpha+\beta)^2=\alpha^2+\beta^2+2\alpha\beta$$
    $$\Rightarrow$$  $$\left(\dfrac{-2b}{a}\right)^2=\alpha^2+\beta^2+2\times\dfrac{c}{a}$$
    $$\therefore$$   $$\alpha^2+\beta^2=\dfrac{4b^2}{a^2}-\dfrac{2c}{a}$$              ----- ( 2 ) 
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta$$
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\dfrac{4b^2}{a^2}-\dfrac{2c}{a}-\dfrac{2c}{a}$$                                         [ From ( 1 ) and ( 2 ) ]
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\dfrac{4b^2-4ac}{a^2}$$
    $$\therefore$$   $$\alpha-\beta=\sqrt{\dfrac{4b^2-4ac}{a^2}}$$           ------ ( 3 )
    $$\Rightarrow$$  Now, $$\alpha+\delta$$ and $$\beta+\delta$$ are roots of quadratic equation $$Ax^2+2Bx+C=0$$
    $$\Rightarrow$$  $$(\alpha+\delta)(\beta+\delta)=\dfrac{C}{A}$$
    $$\Rightarrow$$  $$\alpha\beta+\alpha\delta+\beta\delta+\delta^2=\dfrac{C}{A}$$
    $$\therefore$$   $$\alpha\beta=\dfrac{C}{A}-\alpha\delta-\beta\delta-\delta^2$$                                       -------- ( 4 )
    $$\Rightarrow$$  $$(\alpha+\delta)+(\beta+\delta)=\dfrac{-2B}{A}$$
    $$\Rightarrow$$  $$\alpha+\beta+2\delta=\dfrac{-2B}{A}$$
    $$\Rightarrow$$  $$\alpha+\beta=\dfrac{-2B}{A}-2\delta$$                -------- ( 5 )
    $$\Rightarrow$$  $$(\alpha+\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2$$
    $$\therefore$$    $$\alpha^2+\beta^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-2\alpha\beta$$                          --------  ( 6 )
    $$\Rightarrow$$  $$[(\alpha+\delta)-(\beta+\delta)]^2=(\alpha-\beta)^2$$
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta$$
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-2\alpha\beta-2\alpha\beta$$                            [ From ( 6 ) ]
    $$\Rightarrow$$   $$(\alpha-\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-4\alpha\beta$$
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\dfrac{4B^2}{A^2}+\dfrac{8B\delta}{A}+4\delta^2-\dfrac{4C}{A}+4\alpha\delta+4\beta\delta+4\delta^2$$              [ From ( 4 ) ]
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\dfrac{4B}{A^2}-\dfrac{4C}{A}+\dfrac{8B\delta}{A}+8\delta^2+4\delta(\alpha+\beta)$$
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\dfrac{4B^2-4AC}{A^2}+\dfrac{8B\delta}{A}+8\delta^2-\dfrac{8B\delta}{A}-8\delta^2$$                        [ From ( 5 ) ]
    $$\Rightarrow$$  $$(\alpha-\beta)^2=\dfrac{4B^2-4AC}{A^2}$$

    $$\therefore$$  $$(\alpha-\beta)=\sqrt{\dfrac{4B^2-4AC}{A^2}}$$                    ------- ( 7 )

    $$\Rightarrow$$  $$\dfrac{\alpha-\beta}{\alpha-\beta}=\dfrac{\sqrt{\dfrac{4b^2-4ac}{a^2}}}{\sqrt{\dfrac{4B^2-4AC}{A^2}}}$$                           [ Dividing ( 3 ) by ( 7 )]

    $$\Rightarrow$$  $$1=\dfrac{\sqrt{\dfrac{4b^2-4ac}{a^2}}}{\sqrt{\dfrac{4B^2-4AC}{A^2}}}$$

    $$\Rightarrow$$  $$\dfrac{4B^2-4AC}{A^2}=\dfrac{4b^2-4ac}{a^2}$$

    $$\therefore$$  $$\dfrac{b^2-ac}{B^2-AC}=\dfrac{a^2}{A^2}=\left(\dfrac{a}{A}\right)^2$$

  • Question 9
    1 / -0
    The roots of the equation $$\displaystyle \left ( x-a \right )\left ( x-b \right )+\left ( x-b \right )\left ( x-c \right )+\left ( x-c \right )\left ( x-a \right )=0$$ are
    Solution
    Given equation is written as 
    $$\displaystyle 3x^{2}-2x\left ( a+b+c \right )+\left ( ab+bc+ca \right )=0$$
    Discriminant is $$\displaystyle 4\left ( a+b+c \right )^{2}-12\left ( ab+bc+ca \right )$$
    $$\displaystyle =4\left ( a^{2}+b^{2}+c^{2}-ab-bc-ca\right )$$
    $$\displaystyle =2\left [ \left ( a-b \right )^{2}+\left ( b-c \right )^{2}+\left ( c-a \right )^{2} \right ]$$
    =+ve
    $$\displaystyle \therefore $$ Roots are real
  • Question 10
    1 / -0
    If the quadratic equation $$\displaystyle x^{2}-mx-4x+1=0$$ has real and distinct roots, then the values of $$m$$ are
    A.  $$\displaystyle (-\infty , -6)$$
    B.  $$\displaystyle (-\infty,-3)$$   
    C.  $$(-2,\infty )$$  
    D.  $$\displaystyle \left ( 2,\infty  \right )$$
    Solution
    For an equation $$ a{x}^{2} + bx + c = 0 $$, the discriminant $$ \triangle = {b}^{2} -4ac $$ helps us understand the nature of the roots. 

     When $$ \triangle > 0 $$ and a perfect square, roots are  real and distinct

    So $$ {(-(m+4))}^{2} -4 \times 1 \times 1  > 0 $$

    $$\Rightarrow$$ $$ ({m}^{2} + 16 +8m) - 4  > 0 $$

    $$\Rightarrow$$ $$ {m}^{2}  +8m + 12 > 0 $$

    $$\Rightarrow$$ $$ {m}^{2}  +2m + 6m + 12 > 0 $$

    $$\Rightarrow$$ $$ m(m+2) + 6(m+2) > 0 $$

    $$\Rightarrow$$ $$(m+6)(m+2) > 0 $$

    When both $$  (m+6) > 0 ; (m+2) > 0 $$

    $$\Rightarrow$$ $$ m > -6 ; m > -2 $$

    From these two solutions, we have $$ m > -2 $$

    Also, $$ (m+6)(m+2) > 0 $$ , when both $$  (m+6) < 0 ; (m+2) < 0 $$

    $$\Rightarrow$$ $$ m < -6 ; m< -2 $$

    From these two solutions, we have $$ m <- 6 $$

    So both $$A$$ and $$C$$ are the possible values of $$ m  $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now