$$\Rightarrow$$ $$\alpha$$ and $$\beta$$ are the roots of quadratic equation $$ax^2+2bx+c=0$$. $$\Rightarrow$$ $$\alpha\beta=\dfrac{c}{a}$$ ----- ( 1 )
$$\Rightarrow$$ $$\alpha+\beta=\dfrac{-2b}{a}$$
$$\Rightarrow$$ $$(\alpha+\beta)^2=\alpha^2+\beta^2+2\alpha\beta$$
$$\Rightarrow$$ $$\left(\dfrac{-2b}{a}\right)^2=\alpha^2+\beta^2+2\times\dfrac{c}{a}$$
$$\therefore$$ $$\alpha^2+\beta^2=\dfrac{4b^2}{a^2}-\dfrac{2c}{a}$$ ----- ( 2 )
$$\Rightarrow$$ $$(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta$$
$$\Rightarrow$$ $$(\alpha-\beta)^2=\dfrac{4b^2}{a^2}-\dfrac{2c}{a}-\dfrac{2c}{a}$$ [ From ( 1 ) and ( 2 ) ]
$$\Rightarrow$$ $$(\alpha-\beta)^2=\dfrac{4b^2-4ac}{a^2}$$
$$\therefore$$ $$\alpha-\beta=\sqrt{\dfrac{4b^2-4ac}{a^2}}$$ ------ ( 3 )
$$\Rightarrow$$ Now, $$\alpha+\delta$$ and $$\beta+\delta$$ are roots of quadratic equation $$Ax^2+2Bx+C=0$$
$$\Rightarrow$$ $$(\alpha+\delta)(\beta+\delta)=\dfrac{C}{A}$$
$$\Rightarrow$$ $$\alpha\beta+\alpha\delta+\beta\delta+\delta^2=\dfrac{C}{A}$$
$$\therefore$$ $$\alpha\beta=\dfrac{C}{A}-\alpha\delta-\beta\delta-\delta^2$$ -------- ( 4 )
$$\Rightarrow$$ $$(\alpha+\delta)+(\beta+\delta)=\dfrac{-2B}{A}$$
$$\Rightarrow$$ $$\alpha+\beta+2\delta=\dfrac{-2B}{A}$$
$$\Rightarrow$$ $$\alpha+\beta=\dfrac{-2B}{A}-2\delta$$ -------- ( 5 )
$$\Rightarrow$$ $$(\alpha+\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2$$
$$\therefore$$ $$\alpha^2+\beta^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-2\alpha\beta$$ -------- ( 6 )
$$\Rightarrow$$ $$[(\alpha+\delta)-(\beta+\delta)]^2=(\alpha-\beta)^2$$
$$\Rightarrow$$ $$(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta$$
$$\Rightarrow$$ $$(\alpha-\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-2\alpha\beta-2\alpha\beta$$ [ From ( 6 ) ]
$$\Rightarrow$$ $$(\alpha-\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-4\alpha\beta$$
$$\Rightarrow$$ $$(\alpha-\beta)^2=\dfrac{4B^2}{A^2}+\dfrac{8B\delta}{A}+4\delta^2-\dfrac{4C}{A}+4\alpha\delta+4\beta\delta+4\delta^2$$ [ From ( 4 ) ]
$$\Rightarrow$$ $$(\alpha-\beta)^2=\dfrac{4B}{A^2}-\dfrac{4C}{A}+\dfrac{8B\delta}{A}+8\delta^2+4\delta(\alpha+\beta)$$
$$\Rightarrow$$ $$(\alpha-\beta)^2=\dfrac{4B^2-4AC}{A^2}+\dfrac{8B\delta}{A}+8\delta^2-\dfrac{8B\delta}{A}-8\delta^2$$ [ From ( 5 ) ]
$$\Rightarrow$$ $$(\alpha-\beta)^2=\dfrac{4B^2-4AC}{A^2}$$
$$\therefore$$ $$(\alpha-\beta)=\sqrt{\dfrac{4B^2-4AC}{A^2}}$$ ------- ( 7 )
$$\Rightarrow$$ $$\dfrac{\alpha-\beta}{\alpha-\beta}=\dfrac{\sqrt{\dfrac{4b^2-4ac}{a^2}}}{\sqrt{\dfrac{4B^2-4AC}{A^2}}}$$ [ Dividing ( 3 ) by ( 7 )]
$$\Rightarrow$$ $$1=\dfrac{\sqrt{\dfrac{4b^2-4ac}{a^2}}}{\sqrt{\dfrac{4B^2-4AC}{A^2}}}$$
$$\Rightarrow$$ $$\dfrac{4B^2-4AC}{A^2}=\dfrac{4b^2-4ac}{a^2}$$
$$\therefore$$ $$\dfrac{b^2-ac}{B^2-AC}=\dfrac{a^2}{A^2}=\left(\dfrac{a}{A}\right)^2$$