Self Studies

Quadratic Equations Test - 43

Result Self Studies

Quadratic Equations Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If 11 is a root of the equations ay2ay^2 + ay+3=0ay + 3 = 0 and y2y^2+ y+b=0y + b = 0, then find the value of abab
  • Question 2
    1 / -0
    The ratio of the roots of the equation ax2+bx+c=0 { ax }^{ 2 }+bx+c=0 is same as the ratio of the roots of equation px2+qx+r=0 { px }^{ 2 }+qx+r=0. If D1 { D }_{ 1 } and D2 { D }_{ 2 } are the discriminants of   ax2+bx+c=0 { ax }^{ 2 }+bx+c=0  and px2+qx+r=0 { px }^{ 2 }+qx+r=0 respectively, then D1:D2= { D }_{ 1 }:{ D }_{ 2 }=
    Solution
    Step 1: Using quadratic formula,\textbf{Step 1: Using quadratic formula,}
     
                    x=b±D2a\boldsymbol{x=\dfrac{-b\pm\sqrt{D}}{2a}}

              ax2+bx+c=0ax^2+bx+c=0

                    x=b±D12ax=\dfrac{-b\pm\sqrt{D_1}}{2a} [   Using Quadratic Formula ][\text{   Using Quadratic Formula }]

               px2+qx+r=0px^2+qx+r=0

                     x=q±D22ax=\dfrac{-q\pm\sqrt{D_2}}{2a} [   Using Quadratic Formula ][\text{   Using Quadratic Formula }]

          As per given question, We have \text{As per given question, We have }

                   b+D1bD1=q+D2qD2\dfrac{-b+\sqrt{D_1}}{-b-\sqrt{D_1}}=\dfrac{-q+\sqrt{D_2}}{-q-\sqrt{D_2}}

    Step 2: Using Componendo and Dividendo, we get\textbf{Step 2: Using Componendo and Dividendo, we get}

                   D1b=D2q\dfrac{-\sqrt{D_1}}{b}=\dfrac{-\sqrt{D_2}}{q}

         On squaring both side\text{On squaring both side}

                   D1b2=D2q2\dfrac{D_1}{b^2}=\dfrac{D_2}{q^2}

              D1D2=b2q2\Rightarrow \dfrac{D_1}{D_2}=\dfrac{b^2}{q^2}
  • Question 3
    1 / -0
    Let a,b,ca, b, c be the lengths of sides of a scalene triangle. If the roots of the equation  x2+2(a+b+c)x+3λ(ab+bc+ca)=0\displaystyle x^{2}+2(a+b+c)x+3\lambda (ab+bc+ca)=0 (λR)(\lambda \in R) are real then
    Solution
    Since roots of given quadratic are real, D0D \geq 0
    (a+b+c)23λ(ab+bc+ca)0\Rightarrow (a+b+c)^2-3\lambda(ab+bc+ca) \geq 0
    λ13(a+b+c)2ab+bc+ca=23+13a2+b2+c2ab+bc+ca\Rightarrow \lambda \leq \cfrac{1}{3} \cfrac{(a+b+c)^2}{ab+bc+ca}=\cfrac{2}{3}+\cfrac{1}{3}\cfrac{a^2+b^2+c^2}{ab+bc+ca}
    Given a,b,ca,b,c are sides of triangle a+b>cac+bc>c2\Rightarrow a+b>c\Rightarrow ac+bc>c^2
    Similarly, ab+bc>b2ab+bc> b^2 and ca+ab>a2ca+ab> a^2
    Using these a2+b2+c2<2(ab+bc+ca)a^2+b^2+c^2<2(ab+bc+ca)
    Hence, λ<23+23=43\lambda < \cfrac{2}{3}+\cfrac{2}{3}=\cfrac{4}{3}.
  • Question 4
    1 / -0
    The equation 2x2x25=x22x3\sqrt {2x-2x^2-5}=x^2-2x-3, where xx is real has 
    Solution
    Let us consider the expression, 2x2x252x-2x^2-5.
    Δ=224(2)(5)\Delta = 2^2 - 4(-2)(-5)
    Δ=440\Delta = 4 - 40
    Δ=36<0\Delta = -36 < 0
    The coefficient of x2x^2 is negative. Hence the expression is negative for all xx
    Hence, the term inside the square root is always negative. So, there are no real roots for the equation. 
  • Question 5
    1 / -0
    If x2(a+b+c)x+(ab+bc+ca)=0{ x }^{ 2 }-\left( a+b+c \right) x+\left( ab+bc+ca \right) =0 has non real roots, where a,b,cR+a,b,c\in { R }^{ + }, then a,b,c\sqrt { a } ,\sqrt { b } ,\sqrt { c }
    Solution
    b24ac<0b^{2}-4ac<0
    Or 
    (a+b+c)24(ab+bc+ac)<0(a+b+c)^{2}-4(ab+bc+ac)<0
    a2+b2+c22ab2bc2ac<0a^{2}+b^{2}+c^{2}-2ab-2bc-2ac<0
    (abc)24bc<0(a-b-c)^{2}-4bc<0
    or 
    (abc)2<4bc(a-b-c)^{2}<4bc

    (abc)<2bc(a-b-c)<2\sqrt{b}\sqrt{c}

    a<b+c+2bca<b+c+2\sqrt{b}\sqrt{c}

    a<(b+c)2a<(\sqrt{b}+\sqrt{c})^{2}

    Or 
    a2<(b+c)2\sqrt{a}^{2}<(\sqrt{b}+\sqrt{c})^{2}

    a<b+c\sqrt{a}<\sqrt{b}+\sqrt{c}
    Hence sum of two sides is greater than the third side.
    Hence a triangle can be formed with sides a,b,c\sqrt{a},\sqrt{b},\sqrt{c}.
  • Question 6
    1 / -0
    The value of x26x+13x^2-6x+13 can never be less than
    Solution
    x26x+13=x26x+9+4\because x^2-6x+13=x^2-6x+9+4
    =(x3)2+44=(x-3)^2+4\ge4
    because (x3)2(x-3)^2 can never be less than zero
    \therefore least value of x26x+13=4x^2-6x+13=4
  • Question 7
    1 / -0
    On solving 4x24a2x+(a4b4)4x^2 - 4a^2x + (a^4 - b^4) = 0 we get value of xx is equal to
    Solution
    On comparing the equation with Ax2+Bx+C=0Ax^2+Bx+C = 0,
    We get, A=4,B=4a2,C=a4b4A = 4, B = -4a^2, C = a^4-b^4
    = B24ACB^2 - 4AC =(4a2)2 (-4a^2)^2 - 4*4*(a4b4)(a^4 - b^4)
       = 16a416a4+16b4 16a^4 - 16a^4 + 16b^4 = 16b416b^4

    x=B±D2A x = \displaystyle\frac{- B \pm\sqrt D}{2A} = 4(4a2)±16b42×4\displaystyle\frac{- 4(-4a^2)\pm\sqrt {16b^4}}{2 \times 4}

     = 4a2±4b28\displaystyle\frac {4a^2\pm4b^2}{8}a2+ b22\displaystyle\frac {a^2 + b^2}{2} or a2b22\displaystyle\frac {a^2 - b^2}{2} 

  • Question 8
    1 / -0
    If α,β\alpha, \beta are the roots of ax2+2bx+c=0\displaystyle ax^{2}+2bx+c=0 and that of Ax2+2Bx+C=0\displaystyle Ax^{2}+2Bx+C=0 be α+δ,β+δ\displaystyle \alpha+\delta, \beta +\delta then the value of b2acB2AC\displaystyle \frac{b^{2}-ac}{B^{2}-AC} is
    Solution
    \Rightarrow  α\alpha and β\beta are the roots of quadratic equation ax2+2bx+c=0ax^2+2bx+c=0.              
    \Rightarrow  αβ=ca\alpha\beta=\dfrac{c}{a}         ----- ( 1 )
    \Rightarrow  α+β=2ba\alpha+\beta=\dfrac{-2b}{a}
    \Rightarrow  (α+β)2=α2+β2+2αβ(\alpha+\beta)^2=\alpha^2+\beta^2+2\alpha\beta
    \Rightarrow  (2ba)2=α2+β2+2×ca\left(\dfrac{-2b}{a}\right)^2=\alpha^2+\beta^2+2\times\dfrac{c}{a}
    \therefore   α2+β2=4b2a22ca\alpha^2+\beta^2=\dfrac{4b^2}{a^2}-\dfrac{2c}{a}              ----- ( 2 ) 
    \Rightarrow  (αβ)2=α2+β22αβ(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta
    \Rightarrow  (αβ)2=4b2a22ca2ca(\alpha-\beta)^2=\dfrac{4b^2}{a^2}-\dfrac{2c}{a}-\dfrac{2c}{a}                                         [ From ( 1 ) and ( 2 ) ]
    \Rightarrow  (αβ)2=4b24aca2(\alpha-\beta)^2=\dfrac{4b^2-4ac}{a^2}
    \therefore   αβ=4b24aca2\alpha-\beta=\sqrt{\dfrac{4b^2-4ac}{a^2}}           ------ ( 3 )
    \Rightarrow  Now, α+δ\alpha+\delta and β+δ\beta+\delta are roots of quadratic equation Ax2+2Bx+C=0Ax^2+2Bx+C=0
    \Rightarrow  (α+δ)(β+δ)=CA(\alpha+\delta)(\beta+\delta)=\dfrac{C}{A}
    \Rightarrow  αβ+αδ+βδ+δ2=CA\alpha\beta+\alpha\delta+\beta\delta+\delta^2=\dfrac{C}{A}
    \therefore   αβ=CAαδβδδ2\alpha\beta=\dfrac{C}{A}-\alpha\delta-\beta\delta-\delta^2                                       -------- ( 4 )
    \Rightarrow  (α+δ)+(β+δ)=2BA(\alpha+\delta)+(\beta+\delta)=\dfrac{-2B}{A}
    \Rightarrow  α+β+2δ=2BA\alpha+\beta+2\delta=\dfrac{-2B}{A}
    \Rightarrow  α+β=2BA2δ\alpha+\beta=\dfrac{-2B}{A}-2\delta                -------- ( 5 )
    \Rightarrow  (α+β)2=(2BA2δ)2(\alpha+\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2
    \therefore    α2+β2=(2BA2δ)22αβ\alpha^2+\beta^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-2\alpha\beta                          --------  ( 6 )
    \Rightarrow  [(α+δ)(β+δ)]2=(αβ)2[(\alpha+\delta)-(\beta+\delta)]^2=(\alpha-\beta)^2
    \Rightarrow  (αβ)2=α2+β22αβ(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta
    \Rightarrow  (αβ)2=(2BA2δ)22αβ2αβ(\alpha-\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-2\alpha\beta-2\alpha\beta                            [ From ( 6 ) ]
    \Rightarrow   (αβ)2=(2BA2δ)24αβ(\alpha-\beta)^2=\left(\dfrac{-2B}{A}-2\delta\right)^2-4\alpha\beta
    \Rightarrow  (αβ)2=4B2A2+8BδA+4δ24CA+4αδ+4βδ+4δ2(\alpha-\beta)^2=\dfrac{4B^2}{A^2}+\dfrac{8B\delta}{A}+4\delta^2-\dfrac{4C}{A}+4\alpha\delta+4\beta\delta+4\delta^2              [ From ( 4 ) ]
    \Rightarrow  (αβ)2=4BA24CA+8BδA+8δ2+4δ(α+β)(\alpha-\beta)^2=\dfrac{4B}{A^2}-\dfrac{4C}{A}+\dfrac{8B\delta}{A}+8\delta^2+4\delta(\alpha+\beta)
    \Rightarrow  (αβ)2=4B24ACA2+8BδA+8δ28BδA8δ2(\alpha-\beta)^2=\dfrac{4B^2-4AC}{A^2}+\dfrac{8B\delta}{A}+8\delta^2-\dfrac{8B\delta}{A}-8\delta^2                        [ From ( 5 ) ]
    \Rightarrow  (αβ)2=4B24ACA2(\alpha-\beta)^2=\dfrac{4B^2-4AC}{A^2}

    \therefore  (αβ)=4B24ACA2(\alpha-\beta)=\sqrt{\dfrac{4B^2-4AC}{A^2}}                    ------- ( 7 )

    \Rightarrow  αβαβ=4b24aca24B24ACA2\dfrac{\alpha-\beta}{\alpha-\beta}=\dfrac{\sqrt{\dfrac{4b^2-4ac}{a^2}}}{\sqrt{\dfrac{4B^2-4AC}{A^2}}}                           [ Dividing ( 3 ) by ( 7 )]

    \Rightarrow  1=4b24aca24B24ACA21=\dfrac{\sqrt{\dfrac{4b^2-4ac}{a^2}}}{\sqrt{\dfrac{4B^2-4AC}{A^2}}}

    \Rightarrow  4B24ACA2=4b24aca2\dfrac{4B^2-4AC}{A^2}=\dfrac{4b^2-4ac}{a^2}

    \therefore  b2acB2AC=a2A2=(aA)2\dfrac{b^2-ac}{B^2-AC}=\dfrac{a^2}{A^2}=\left(\dfrac{a}{A}\right)^2

  • Question 9
    1 / -0
    The roots of the equation (xa)(xb)+(xb)(xc)+(xc)(xa)=0\displaystyle \left ( x-a \right )\left ( x-b \right )+\left ( x-b \right )\left ( x-c \right )+\left ( x-c \right )\left ( x-a \right )=0 are
    Solution
    Given equation is written as 
    3x22x(a+b+c)+(ab+bc+ca)=0\displaystyle 3x^{2}-2x\left ( a+b+c \right )+\left ( ab+bc+ca \right )=0
    Discriminant is 4(a+b+c)212(ab+bc+ca)\displaystyle 4\left ( a+b+c \right )^{2}-12\left ( ab+bc+ca \right )
    =4(a2+b2+c2abbcca)\displaystyle =4\left ( a^{2}+b^{2}+c^{2}-ab-bc-ca\right )
    =2[(ab)2+(bc)2+(ca)2]\displaystyle =2\left [ \left ( a-b \right )^{2}+\left ( b-c \right )^{2}+\left ( c-a \right )^{2} \right ]
    =+ve
    \displaystyle \therefore Roots are real
  • Question 10
    1 / -0
    If the quadratic equation x2mx4x+1=0\displaystyle x^{2}-mx-4x+1=0 has real and distinct roots, then the values of mm are
    A.  (,6)\displaystyle (-\infty , -6)
    B.  (,3)\displaystyle (-\infty,-3)   
    C.  (2,)(-2,\infty )  
    D.  (2, )\displaystyle \left ( 2,\infty  \right )
    Solution
    For an equation ax2+bx+c=0 a{x}^{2} + bx + c = 0 , the discriminant =b24ac \triangle = {b}^{2} -4ac helps us understand the nature of the roots. 

     When >0 \triangle > 0 and a perfect square, roots are  real and distinct

    So ((m+4))24×1×1 >0 {(-(m+4))}^{2} -4 \times 1 \times 1  > 0

    \Rightarrow (m2+16+8m)4 >0 ({m}^{2} + 16 +8m) - 4  > 0

    \Rightarrow m2 +8m+12>0 {m}^{2}  +8m + 12 > 0

    \Rightarrow m2 +2m+6m+12>0 {m}^{2}  +2m + 6m + 12 > 0

    \Rightarrow m(m+2)+6(m+2)>0 m(m+2) + 6(m+2) > 0

    \Rightarrow (m+6)(m+2)>0(m+6)(m+2) > 0

    When both  (m+6)>0;(m+2)>0  (m+6) > 0 ; (m+2) > 0

    \Rightarrow m>6;m>2 m > -6 ; m > -2

    From these two solutions, we have m>2 m > -2

    Also, (m+6)(m+2)>0 (m+6)(m+2) > 0 , when both  (m+6)<0;(m+2)<0  (m+6) < 0 ; (m+2) < 0

    \Rightarrow m<6;m<2 m < -6 ; m< -2

    From these two solutions, we have m<6 m <- 6

    So both AA and CC are the possible values of m 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now