Self Studies

Quadratic Equat...

TIME LEFT -
  • Question 1
    1 / -0

    Given that $$r$$ and $$s$$ are constants , the solution of the quadratic equation, $$r{x}^{2}=\dfrac{1}{s}x+3$$ , is:

  • Question 2
    1 / -0

    The equation $$\displaystyle 9y^{2}(m+3)+6(m-3)y+(m+3)=0 $$, where $$m$$ is real has real roots then 

  • Question 3
    1 / -0

    A ray emanating from (6,2) is incident on ellipse $$\displaystyle \frac{(x-1)^{2}}{45}+\frac{(y-2)^{2}}{20}=1$$ at (4.6) The equation of reflected ray (after 1st reflection ) is  

  • Question 4
    1 / -0

    The sum of all roots of the roots of the equations $$\displaystyle |x-1|^{2}-5|x-1|+6=0$$ is 

  • Question 5
    1 / -0

    Solve the  equation: $$3+\dfrac {30}{{x}^{2}}=-\dfrac {21}{x}$$

  • Question 6
    1 / -0

    If $$(1+2x+x^2)^n=\displaystyle\sum^{2n}_{r=0}a_rx^r$$, then $$a_r=$$.

  • Question 7
    1 / -0

    If the expression $$x^2+2(a+b+c)x+3(bc+ca+ab)$$ is a perfect square, then

  • Question 8
    1 / -0

    Number of possible value(s) of integer '$$a$$' for which the quadratic equation $$x^2+ax+16=0$$ has equal roots, is

  • Question 9
    1 / -0

    Equation $$x^2 - x + q = 0$$ has imaginary roots if 

  • Question 10
    1 / -0

    Discriminant is_________ for the quadratic equation $$x+\dfrac { 1 }{ x } =-5$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now