Self Studies

Arithmetic Progressions Test - 34

Result Self Studies

Arithmetic Progressions Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the $${2}^{nd}$$ term of an AP is $$13$$ and the $${5}^{th}$$ term is $$25,$$ what is its $${7}^{th}$$ term?
    Solution
    Let the first term of the AP be $$a$$, the common difference be $$d$$.
    Then,
    $${2}^{nd}$$ term is $$a+d=13.......(1)$$
    $${5}^{th}$$ term is $$a+4d=25........(2)$$

    Solving for $$d$$,

    By $$Eq(2)-Eq(1)$$
    $$(a+4d)-(a+d)=25-13$$
    $$\Rightarrow 3d=12$$
    $$\Rightarrow d=4$$

    Hence, From $$(1)$$ 
    $$a=13-d=13-4=9$$

    Now, $${7}^{th}$$ term is $$a+6d$$
    Substituting values of $$a$$ and $$d$$
    $$7^{th} term=9+6\times4=33$$
  • Question 2
    1 / -0
    The $$4^{th}$$ term from the end of the AP: $$11, 8, 5, ..., -49$$ is
    Solution
    In the given A.P. $$a=11,d=-3$$, last term $$(l)=-49$$,
    then $$l=a+(n-1)d$$
    $$\Rightarrow -49=11+(n-1)(-3)$$
    $$\Rightarrow 3n=63\Rightarrow n=21$$
    Hence, there are $$21$$ terms in AP.
    The $$4^{th}$$ term from the last will be 18th term from beginning.
    So, $$a_{18}=a+(18-1)d$$
    $$\Rightarrow 11+17(-3)$$
    $$\Rightarrow 11-51=-40$$
    SO $$4^{th}$$  term from the end of the AP: $$11, 8, 5, ..., -49$$ is $$-40$$.
  • Question 3
    1 / -0
    If $$7$$ times the $$7^{th}$$ term of an AP is equal to $$11$$ times its $$11^{th}$$ term, then its $$18^{th}$$ term will be
    Solution

    $${\textbf{Step - 1: Find 7th term of the AP}}$$

                      $${a_7} = a + (n - 1)d$$

                           $$ = a + (7 - 1)d$$

                           $$ = a + 6d$$

                      $${\text{The 11th term of the AP,}}$$

                      $${a_{11}} = a + (n - 1)d$$

                             $$ = a + (11 - 1)d$$

                             $$ = a + 10d$$

    $${\textbf{Step - 2: According to the question 7 times of 7th term is equal to 11 times of 11th term}}$$

                      $$7(a + 6d) = 11(a + 10d)$$

                      $$\Rightarrow 7a + 42d = 11a + 110d$$

                      $$\Rightarrow 4a + 68d = 0$$

    $${\textbf{Step - 3: Find value for a}}$$

                      $${\text{a = }}\dfrac{{ - 68}}{4}d$$

    $${\textbf{Step - 4: Find value of 18th term }}$$

                      $$a_{18} = a + (18 - 1)d$$

                             $$ = a + 17d$$

    $${\textbf{Step - 5: Substitute the value of a in equation of }}{{\textbf{a}}_\textbf{18}}$$

                      $${a_{18}} = \dfrac{{ - 68}}{4}d + 17d$$

                             $$ = \dfrac{{ - 68d + 68d}}{4} = 0$$

    $${\textbf{Hence , the required value is (D) 0}}$$

  • Question 4
    1 / -0
    The $$21^{st}$$ term of the AP whose first term is $$3$$ and second term is $$4$$, is
    Solution
    Given, 
    $$a_1=3$$, $$a_2=4$$.
    $$\therefore$$ Common difference, $$d=1$$.
    Using the formula for $$n^{th} $$ term of an $$ A.P. $$
    $$a_n=a+(n-1)d$$
    For, $$n=21$$,
    $$a_{21}=3+(21-1)\times 1$$
    $$a_{21}=3+20\times 1$$
    $$a_{21}= 23$$
  • Question 5
    1 / -0
    The sum of the first $$16$$ terms of the AP: $$10, 6, 2,...$$ is
    Solution
    Given,  $$10,6,2.........$$
    Since, first term $$= 10$$ and common difference $$=6-10=-4$$

    $$S_n=\dfrac n2[2a+(n-1)d]$$

    $$S_{16}=\dfrac {16}2[2(10)+(16-1)(-4)]$$

    $$S_{16}=8[20+(15)(-4)]$$

    $$S_{16}=8[20-60]$$

    $$S_{16}=8\times (-40) = -320$$
    Option A is correct.
  • Question 6
    1 / -0
    The sum of first five multiples of $$3$$ is

    Solution

    Sum of an AP is: $${\dfrac{n}{2}}\times({2a+(n-1)d})$$
    $$a = 3, d= 3, n=5$$
    Then, 
    Sum = $${\dfrac{5}{2}}\times{(2\times3+(5-1)\times(3)})$$
    = $${\dfrac{5}{2}}\times{(6+12)}$$
    = $$45$$
  • Question 7
    1 / -0
    The sum of $$n$$ terms of an A.P. is $$4n^2-n$$. The common difference $$=$$ ____
    Solution
    Given, $$ {S}_{n} = 4{n}^{2} - n $$ 
    When $$ n = 1 $$, 
    $$ {S}_{1} = 4{(1)}^{2} - 1 = 4 - 1 = 3  $$ 
    Now, obviously, the sum of the first term will be the first term itself, as there are no other terms involved.

    When $$ n = 2 $$, 
    $$ {S}_{2} = 4{(2)}^{2} - 1 =16 = 2 = 14  $$ 

    The sum of the first $$2$$ terms is equal to $$a_1+a_2$$

    Therefore, $$a_1+a_2=14$$

    We have shown, above, that $$a_1=3$$

    Substituting it in $$a_1+a_2=14,$$
    $$3+a_2=14$$
    $$a_2=11.$$

    The common difference, $$d,$$ is the difference between any $$2$$ consecutive terms.
    $$d=a_2−a_1$$
    $$=11−3$$
    $$=8$$
  • Question 8
    1 / -0
    Given the AP $$10, 7, 4, ....., -62$$.  The $$11^{th}$$ term from end of the AP is
    Solution
    Let $$d$$ be the common difference of the given A.P>

    $$d=7-10$$

    $$\Rightarrow d=-3$$

    Here, $$a=10, d=-3, t_n=-62$$

    $$n^{th}$$ term of an A.P. is given as,

    $$ t_n=a+(n-1)d $$

    Thus,

    $$ -62 = 10 +(n-1)(-3)$$

    $$ -72 = (n-1)(-3) $$

    Thus, $$n=25$$

    Hence, in our solution, we are looking for $$11^{th}$$ term from last that is $$15^{th}$$ term from starting.

    $$ t_{15}=10+(15-1)(-3)$$ 
         $$=-32$$

    Hence option (D) is correct
  • Question 9
    1 / -0
    The interior angles of a convex polygon are in Arithmetic

    Progression. The smallest angle is $$120^{o}$$ and the common

    difference is
    $$ 5^{o}$$. What is the number of sides of the polygon?




  • Question 10
    1 / -0
    If the $$n^{th}$$ term of an A.P. is given by $$a_n=5n-3$$, then the sum of first $$10$$ terms is
    Solution
    Given, $$a_n = 5n-3$$
    Put $$n=1$$, $$a_1= 5-3= 2$$
    Put $$n=10$$, $$a_{10}= 5\times10-3= 47$$
    Sum $$=$$ $${\dfrac{n}{2}}{(a+l)}$$
    $$=$$ $${\dfrac{10}{2}}{(2+47)}$$
    $$=$$ $$49\times5$$
    $$= 245$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now