Self Studies

Arithmetic Progressions Test - 37

Result Self Studies

Arithmetic Progressions Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If sum of $$n$$ terms of an A.P. is $$3n^2+5n$$ and $$T_m=164 $$, what is the value of m?
    Solution
    Since $${ S }_{ n }={ 3n }^{ 2 }+5n$$
    Replace $$n$$ by $$(n-1)$$; we get
    $${ S }_{ n-1 }={ 3(n-1) }^{ 2 }+5(n-1)$$
    $$= (n-1) [3(n-1)+5]$$
    $$= (n-1) [3n-3+5]$$
    $$= (n-1) (3n+2)$$
    Now, $${ T }_{ n }={ S }_{ n }-{ S }_{ n-1 }= 6n+2$$ 
    Substituting $${ S }_{ n }$$ and $${ S }_{ n-1 }$$; we get
    $${ T }_{ n }=6n+2 = 164$$
    $$n = 27$$

  • Question 2
    1 / -0
    There is an auditorium with $$35$$ rows of seats. There are $$20$$ seats in the first row, $$22$$ seats in the second row, $$24$$ seats in the third row, and so on. Find the number of seats in the twenty fifth row.
    Solution
    Given the number of seats in $$row1, row2$$ and $$row3$$ is $$20, 22$$ and $$24$$.

    We note that the number of seats in each subsequent row forms an AP.

    $$20, 22, 24, .....$$ and so on.

    We need to find the number of seats in $$row25$$.

    So, number of seats in $$row25$$  $$= { T }_{ 25 }\quad =\quad a\quad +\quad (n-1)d\\ \\ $$
    where $$'a'$$ is the number of seats in first row, n is the number of rows and $$'d'$$ is the difference in seats in each row.

    $$\quad \qquad \qquad { T }_{ 25 }\quad =\quad 20\quad +\quad (25-1)2\\ \\ \Longrightarrow \qquad { T }_{ 25 }\quad =\quad 20\quad +\quad (24)2\qquad =\quad 68.\\ \\ $$

    Number of seats in $$row25 = 68$$.
  • Question 3
    1 / -0
    Which term of the A.P. 5, 12, 19, 26, ............ is 145
    Solution
    Here first term $$a=5$$ and common difference 
    $$d=12-5=7$$
    Suppose nth term of the A.P. is 145
    Now, $$T_n = a+(n-1)d$$
    $$\therefore 145 =5 (n-1) (7)$$
    $$\therefore 145-5 = 7(n-1)$$
    $$\therefore 140 =7 (n-1)$$
    $$\therefore 20 = n-1        \therefore      n = 21$$
  • Question 4
    1 / -0
    $$\displaystyle S =\frac{n}{2}\left [ 2a+\left ( n-1 \right )d \right ]$$; make $$d$$ the subject of formula.
    Solution
    Given, $$ S=\displaystyle \frac { n }{ 2 } \left[ 2a+(n-1)d \right] $$

    $$ => \displaystyle \frac {2S}{n} = 2a + (n-1)d $$

    $$ => \displaystyle \frac {2S}{n} - 2a = (n-1)d $$

    $$ => \displaystyle \frac {2(S-na)}{n} = (n-1)d $$

    $$ => d = \displaystyle \frac {2(S-na)}{n(n-1)} $$
  • Question 5
    1 / -0
    Find the sum of first $$11$$ positive numbers which are multiples of $$6$$.
    Solution
    Clearly, the numbers are $$6,12,18,...$$ 

    This is an AP with first term $$a=6$$, common difference $$d=6$$ and $$n=11$$.

    We have to find the sum of $$11$$ terms of the given AP 

    Putting $$a=6$$, $$d=6, n=11$$ in $$S_n=\dfrac n2[2a+(n-1)d],$$ we get

    $$S_{11}=\dfrac{11}2[2\times 6+(11-1)\times6]$$

    $$\therefore S_{11}=11\times36$$

    Hence,$$S_{11}=396$$

    Option B is correct.
  • Question 6
    1 / -0
    A man arranges to pay off a debt of Rs. 3600 in 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid he dies leaving one-third of the debt unpaid. Find the value of the first instalment. 
    Solution
    Given that, debt of $$\text{Rs. }3600$$ is to be paid in $$40$$ annual installments.

    $$\therefore \ S_{40}=3600........(i)$$

    Also, given that, after $$30$$ installments one-third of the debt is unpaid

    $$\therefore \ S_{30}=3600-\dfrac{1}{3} \text{ of } 3600$$

                $$=3600-1200$$            $$\left[\because \ \dfrac{1}{3}\times 3600=1200\right]$$

     $$\therefore \ S_{30}=2400........(ii)$$ 

    From $$(i)$$, we get:

    $$S_{40}=\dfrac{40}{2}[2a+39d]=3600$$            $$\left[\because \ S_n=\dfrac{n}{2}\left[2a+(n-1)d\right]\right]$$

    $$\Rightarrow 2a+39d=180.....(iii)$$

    Similarly, from $$(ii)$$, we get:

    $$S_{30}=2400$$

    $$\Rightarrow \dfrac{30}{2}[2a+29d]=2400$$

    $$\Rightarrow 2a+29d=160......(iv)$$

    Subtracting $$(iv)$$ from $$(iii)$$, we get:

    $$(2a+39d)-(2a+29d)=180-160$$

    $$\Rightarrow 10d=20$$

    $$\Rightarrow d=2$$

    Rewriting $$(iii)$$, we get:

    $$2a=180-39d$$

         $$=180-39\times 2$$

         $$=180-78$$

         $$=2a=102$$

    $$\Rightarrow a=\dfrac{102}{2}=51$$

    Hence, the value of the first instalment is $$51$$.
  • Question 7
    1 / -0
    Find the sum of $$A.P.$$ whose first and last term is $$13$$ and $$216$$ respectively & common difference is $$7$$.  
    Solution
    Let  a and d be the first term and the common difference of the given AP respectively. Let there are n terms in the given AP.
    Given $$a=13, d=7$$ and $$a_n=216$$               
    $$\Rightarrow a+(n-1)d=216\Rightarrow 13+(n-1)\times7=216\Rightarrow n=30$$               
    Therefore, there are 30 terms in the given AP.
    Now, Required sum=$$S_{30}=\frac{30}2[2\times13+(30-1)\times7]=15\times229=3435$$
    Hence, Required sum $$=3435$$.
  • Question 8
    1 / -0
    If $$t_{11}$$ and $$t_{16}$$ for an $$A.P.$$ are respectively $$38$$ and $$73$$, then $$t_{31}$$ is $$........$$
    Solution
    Given:
     $${t}_{11}=38,{t}_{16}=73$$

    $$n^{th}$$ term of an A.P. is given as,

    $$t_n=a+(n-1)d$$

    According to the given condition,

    $$\Rightarrow a+10d=38$$         $$...(1)$$

    $$\Rightarrow a+15d=73$$
                  $$...(2)$$

    where $$a$$ is the first term and $$d$$ is the common difference of given AP.
    On subtracting $$(1)$$ from$$ (2)$$, we get,

    $$5d=35$$

    $$\Rightarrow d=7$$

    substituting the value of $$d$$ in $$(1)$$, we get

    $$a+10\times7=38\Rightarrow a+70=38$$

    $$\Rightarrow a=-32$$

    Therefore, 
    $${t}_{31}=a+30d\\=-32+30\times7\\=-32+210\\=178$$
     Hence, option $$(A)$$ is correct.
  • Question 9
    1 / -0
    In the A.P. 7, 14, 21, ... How many terms are to be considered for getting sum 5740.
    Solution
    Given AP is 7,14,21.....
    Since, first term $$a=7$$ and common difference $$d=7$$ 
    Suppose no. of terms in given AP= $$n$$
    Sum of $$n$$ terms $$S_{n}=5740$$
    Since $$S_{n}=\frac n2 [2a+(n-1)d] $$
    $$\Rightarrow 5740=\frac n2[2\times 7+(n-1)7] $$
    $$\Rightarrow 5740=\frac n2[14+7n-7] $$
    $$\Rightarrow 5740=\frac n2[7+7n] $$
    $$\Rightarrow 5740=\frac n2\times 7[1+n] $$
    $$\Rightarrow 5740\times 2= 7n[1+n] $$
    $$\Rightarrow 11480=7n[1+n] $$
    $$\Rightarrow \frac{11480}{7}=n[n+1]$$
    $$\Rightarrow 1640=n^2+n $$
    $$\Rightarrow n^2+n-1640=0 $$
    $$\Rightarrow (n+41)(n-40)=0 $$
    $$\Rightarrow n=-41, n=40$$
    no. of terms $$ n $$ can't be negative.
    $$\therefore n=40 $$
  • Question 10
    1 / -0
    The $$n^{th}$$ term of the sequence   $$\displaystyle\frac{1}{p}$$, $$\displaystyle\frac{1 + 2p}{p}$$, $$\displaystyle\frac{1 + 4p}{p}$$,... is
    Solution
    Sequence, $$\displaystyle\frac{1}{p}$$, $$\displaystyle\frac{1 + 2p}{p}$$, $$\displaystyle\frac{1 + 4p}{p}$$........

    Here 
     $$a =\displaystyle\frac{1}{p}$$, $$ d $$ $$=$$ $$\displaystyle\frac{1 + 2p}{p}$$ $$-\displaystyle\frac{1}{p}$$ 
     
    $$\Rightarrow$$ $$d=\displaystyle\frac{1 + 2p - 1}{p}$$
     
    $$\Rightarrow$$   $$d =2$$
    $$\therefore t_n$$ $$=$$ $$\displaystyle\frac{1}{p} + (n - 1)2 $$  $$=$$ $$\displaystyle\frac{1}{p}$$ + $$\displaystyle\frac{2n - 2}{1}$$   $$\Rightarrow$$  $$t_n$$

    $$=$$  $$\displaystyle\frac{1 + 2np - 2p}{p}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now