Self Studies

Arithmetic Progressions Test - 38

Result Self Studies

Arithmetic Progressions Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$(p + q)^{th}$$ and $$(p - q)^{th}$$ terms of an A.P. are respectively $$m$$ and $$n.$$ The $$p^{th}$$ term is
    Solution
    Let $$a$$ be the first term and $$d$$ be the common difference of the given $$AP$$ then, by using  $$n^{th}$$  term formula

    nth term $$t_{n}= a+(n-1)d $$  we have,

    $$(p+q)^{th}\space=m\Rightarrow a+(p+q-1)d=m$$         ...(1)

    $$(p-q)^{th}\space=n\Rightarrow a+(p-q-1)d=n$$           ...(2)

    Adding (1) and (2), we get

    $$2a+(2p-2)d=m+n$$

    $$\Rightarrow a+(p-1)d=\dfrac{m+n}2$$

    $$\Rightarrow p^{th}\space term=\dfrac{m+n}2$$

    So, Option A is correct.
  • Question 2
    1 / -0
    Sum of first $$5$$ terms of an A.P. is one fourth of the sum of next five terms. If the first term is $$ 2,$$ then the common difference of the A.P. is
    Solution
    let the A.P. be $$a,a+d,a+2d.......$$
    We have $$T_{1}+T_{2}+T_{3}+T_{4}+T_{5}=\dfrac{1}{4}\left [ T_{6}+T_{7}+T_{8}+T_{9}+T_{10} \right ]$$
    $$\because$$ Sum $$=\dfrac{n}{2} ($$first term $$+$$ last term$$)$$
    Then $$\dfrac{5}{2}\left ( T_{1}+T_{5} \right )=\dfrac{1}{4}\times\dfrac{5}{2}\left ( T_{6}+T_{10} \right )$$
    $$\Rightarrow \dfrac{5}{2}\left ( a+\left ( a+4d \right ) \right )=\dfrac{5}{8}\left [ \left (a+5d  \right )\left (a+9d  \right ) \right ] $$
    $$\Rightarrow 2a+4d=\dfrac{1}{4}\left [ 2a+14d \right ]$$
    $$\Rightarrow 4a+8d=a+7d$$
    $$\Rightarrow d=-3a $$        ....$$(a=2)$$
    $$\Rightarrow d=-3\times 2=-6$$
  • Question 3
    1 / -0
    The first term of an A.P. of consecutive integers is $$p$$$$^2$$ $$+ 1. $$The sum $$2p + 1$$ terms of this series can be expressed as
    Solution
    The first term of AP is set of consecutive integers, then common difference is $$d=1$$ & $$a = p^2+1$$
    Here we use the formula for sum of n terms of an AP as given below:
    $$S_n = \dfrac {n}{2}[2a+(n-1)d] $$
    $$\therefore$$ The sum of $$(2p+1)$$, $$S_{2p+1} $$ =$$\dfrac{2p+1}{2}\left [ 2(p^{2}+1)+(2p+1-1)\times 1 \right ]$$
    $$=\dfrac{2p+1}{2}\left [ 2p^{2}+2+2p \right ]$$
    $$=(2p+1)(p^{2}+p+1)$$
  • Question 4
    1 / -0
    In an A.P. S$$_3$$ $$= 6$$, S$$_6$$ $$= 3$$, then it's common difference is equal to ?
    Solution
    We know that for an A.P., sum of n terms is
        $${ S }_{ n }=\dfrac { n }{ 2 } [2a+(n-1)d]$$, where $$a$$ is the first term and $$d$$ is the common difference.
    Now, here $${ S }_{ 3 }=6$$ and $${ S }_{ 6 }=3$$
    $${ S }_{ 3 }=\dfrac { 3 }{ 2 } [2a+(3-1)d]=6$$
    $$=>\dfrac { 3 }{ 2 } [2a+2d]=6$$
    $$=>\dfrac { 6 }{ 2 } [a+d]=6$$
    $$=>3(a+d)=6$$
    $$=>a+d=2$$   -------------(i)
    Also,
    $${ S }_{ 6 }=\dfrac { 6 }{ 2 } [2a+(6-1)d]=3$$
    $$=>3[2a+5d]=3$$
    $$=>2a+5d=1$$
    $$=>2(2-d)+5d=1$$  (using (i))
    $$=>4-2d+5d=1$$
    $$=>3d=1-4$$
    $$=>d=-1$$
    Thus, the common difference is $$-1$$
  • Question 5
    1 / -0
    The sum of all $$2$$-digit odd number is
    Solution
    We have to find the sum $$11+13+15+...+99.$$

    Clearly, the terms of this series form an AP with 
    first term $$a=11$$, 

    common difference $$d=2$$ and 

    last term $$l=a_n=99$$

    $$\Rightarrow a+(n-1)d=99\Rightarrow 11+(n-1)2=99 \Rightarrow n=45$$

    $$\therefore$$ Required sum$$=S_n=\dfrac n2[a+l]$$

    $$=\dfrac{45}2[11+99]=45\times55=2475$$

    Therefore, option A is correct.
  • Question 6
    1 / -0
    The sum of first 24 terms of the sequence whose n$$^{th}$$ term is given by $${a}_{n} = 3 + \displaystyle\frac{2n}{3}$$, is
    Solution
    Given, $${a}_{n} = 3 + \displaystyle\frac{2n}{3}$$

    Hence, $${a}_{n+1} = 3 + \displaystyle\frac{2n+2}{3}$$

    $$\therefore\ $$ Common difference, $$d={a}_{n+1}-{a}_{n}$$
                                             
                                            $$=3 + \displaystyle\frac{2n+2}{3}-3 - \displaystyle\frac{2n}{3}$$
                                             
                                            $$=\dfrac{2}{3}$$

    First term, $$a = {a}_{1} = 3 + \displaystyle\frac{2}{3}$$
                         $$ = \displaystyle\frac{11}{3}$$

    We know that, sum of $$n$$ terms of an arithmetic progression is 
    $${S}_{n} = \displaystyle\frac{n}{2}\left[2a + \left(n - 1\right) d\right]$$

    $$\Rightarrow  {S}_{24} = \displaystyle\frac{24}{2}\left[\displaystyle\frac{22}{3} + 23\left(\displaystyle\frac{2}{3}\right)\right]$$
               
               $$= 12\left[\displaystyle\frac{22 + 46}{3}\right]$$

               $$= \displaystyle\frac{12\times 68}{3}$$

               $$=4\times 68$$

               $$=272$$

    Hence, the sum of first $$24$$ terms of the given series is $$272$$.
  • Question 7
    1 / -0
    If $$7^{th}$$ and $$13^{th}$$ terms of an A.P. are  34 and 64, respectively, then its $$18^{th}$$ term is
    Solution
    $$7^{th}$$ term of the A.P. is $$= 34 = a_7$$

    $$13^{th} $$ term of the A.P. is $$= 64 = a_{13}$$         
    Let $$a$$ be the 1st term $$d$$ be the common diff.

    $$\therefore a_7 = 34$$

    $$\therefore a_7 = 34$$

    $$\Rightarrow a+ 6d = 34$$ ____(i)

    again 

    $$a_{13} = 64$$

    $$\Rightarrow a+ 12d = 64$$ ___(ii)

    (ii) - (i)

    $$\Rightarrow 6d = 30$$

    $$\Rightarrow d = 5$$

    $$\therefore a = 34 - 6d$$

    $$= 34 - 30$$

    $$= 4$$

    $$\therefore a = 4$$

    Now, $$18^{th}$$ term $$= a + (18 - 1) d$$

    $$= a + 17 d$$

    $$ = a + 17 \times 5$$

    $$= 4 + 17 \times 5$$

    $$= 4 + 85 $$

    $$= 89$$

    $$\therefore a_{18} = 89$$
  • Question 8
    1 / -0
    In an A.P., $$S_1 = 6, S_7 = 105,$$ then $$S_n$$: $$S_{n-3}$$ is same as
    Solution
    Let a and d be the first term and common difference of the given AP respectively.
    Given, $$S_1=a=6$$ and
    $$S_7=105\Rightarrow \frac72[2a+(7-1)d]=105$$
    $$\Rightarrow \frac72[2\times6+6d]=105$$
    $$\Rightarrow 6+3d=15$$
    $$\Rightarrow d=3$$
    Now, $$S_n=\dfrac n2[2a+(n-1)d]=\dfrac n2[12+(n-1)3]=\dfrac {3n}2[n+3]$$        ...(1)
    $$S_{n-3}=\dfrac {n-3}2[2a+((n-3)-1)d]=\dfrac {n-3}2[12+(n-4)3]=\dfrac {n-3}2[3n]$$        ...(2)
    From (1) and (2), we get
    $$\dfrac{S_n}{S_{n-3}}=\dfrac{\dfrac {3n}2[n+3]}{\dfrac {n-3}2[3n]}=\dfrac{n+3}{n-3}$$
    Therefore, $$S_n:S_{n-3}::(n+3):(n-3)$$



  • Question 9
    1 / -0
    The sum of all two digit numbers which leave remainder $$1$$ when divided by $$3$$ is
    Solution
    $$\textbf{Step 1:Find first term, common difference and last term of an A.P}$$

                   $$\text{Clearly, the two digits numbers which leave remainder $$1$$ when divided by $$3$$ are $$10,13,16,...,97$$. }$$

                   $$\text{This is an AP with first term $$a=10$$, common difference $$d=3$$ and last term $$l=97$$.}$$

    $$\textbf{Step 2:Find total number of terms of anA.P}$$

                   $$\text{Let there be $$n$$ terms in this AP, then}$$

                   $$a_n=97 = a+(n-1)d$$

                   $$\therefore 10+(n-1)\times3=97$$

                   $$10+3n-3=97$$

                   $$3n=97+3-10$$

                   $$3n=90$$

                   $$\therefore n=30$$
     
    $$\textbf{Step 3:Sum of n terms of an A.P}$$

                   $$\therefore$$ $$\text{Required sum }$$ $$=\displaystyle \frac n2[a+l]=\frac{30}2[10+97]=15\times107=1605$$

    $$\textbf{Hence, Option C is correct.}$$
  • Question 10
    1 / -0
    If the $$nth$$ term of the AP $$9, 7, 5..$$ is same as the $$nth$$ term of the AP $$15, 12, 9,...$$, find $$n.$$
    Solution
    $$n th$$ term of A.P $$9,7,5....=a+(n-1)d$$
    $$\Rightarrow 9+(n-1)-2$$
    $$\Rightarrow 9-2n+2\Rightarrow 11-2n$$
    $$n th$$ term of A.P $$15,12,9,....=a+(n-1)d$$
    $$\Rightarrow 15+(n-1)-3$$
    $$\Rightarrow 15-3n+3\Rightarrow 18-3n$$
    $$\therefore 11-2n=18-3n$$
    $$\Rightarrow 3n-2n=18-11$$
    $$\Rightarrow n=7$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now