Self Studies

Arithmetic Progressions Test - 39

Result Self Studies

Arithmetic Progressions Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find $$n$$ if the given value of $$x$$ is the $$n^{th}$$ term of the AP: $$5\dfrac{1}{2}, 11, 16\dfrac{1}{2},22,... $$ ; $$x=550$$. 
    Solution

    Here, first term $$a=5\displaystyle \frac12=\frac{11}2$$ and the common difference $$d=11-\displaystyle \frac{11}2=\frac{11}2.$$

    Given, $$a_n=x=550$$
    $$\Rightarrow a+(n-1)d=550$$

    $$\Rightarrow \dfrac{11}2+(n-1)\times\dfrac{11}2=550$$

    $$\Rightarrow 1+(n-1)=550\times\dfrac2{11}$$

    $$\Rightarrow n=100$$

  • Question 2
    1 / -0
    Which term of the AP: $$3, 10, 17,..$$ will be $$84$$ more than its $$13^{th}$$ term?
    Solution
    Clearly, the given sequence is an AP with first term $$a=3$$ and common difference $$d=10-3=7$$.
    Given $$n^{th}$$ term is $$84$$ more than its $${13}^{th}$$ term.
    $$\Rightarrow t_n=t_{13}+84$$
    $$\Rightarrow a+(n-1)d=(a+12d)+84$$
    $$\Rightarrow (n-1)d=12d+84$$
    $$\Rightarrow (n-1)7=12\times7+84$$
    $$\Rightarrow (n-1)7=7(12+12)$$
    $$\Rightarrow n-1=24$$
    $$\Rightarrow n=25$$
    Therefore $${25}^{th}$$ term is the required term.
  • Question 3
    1 / -0
    How many terms are there in the A.P., $$7, 13, 19, ...205$$ ?
    Solution
    Given sequence is $$7,13,19,...,205$$

    The first term $$a=7$$ and

    the common difference $$d=13-7=6$$

    the last term is $$205$$

    Let the last term be the $$n^{th}$$ term

    We know that the $$n^{th}$$ term of the arithmetic progression is given by $$a+(n-1)d$$

    Therefore, $$a+(n-1)d=205$$

    $$\implies 7+(n-1)\times(6)=205$$

    $$\implies 7-6+6n=205$$

    $$\implies 1+6n=205$$

    $$\implies 6n=205-1$$

    $$\implies n=\dfrac{204}{6}$$

    $$\implies n=34$$

    Therefore, the number of terms in the given sequence is $$34$$
  • Question 4
    1 / -0
    If the sum of $$n$$ terms of an AP is $$2n$$$$^2$$ $$+ 5n$$, then its $$n$$th term is
    Solution
      Given $${ S }_{ n }=2{ n }^{ 2 }+5n$$

    $$ { S }_{ n-1 }=2{ (n-1) }^{ 2 }+5(n-1)$$

               $$ =2({ n }^{ 2 }-2n+1)+5n-5$$

               $$ =2{ n }^{ 2 }-4n+2+5n-5$$

               $$ =2{ n }^{ 2 }+n-3$$

    Now,  $${ t }_{ n }={ S }_{ n }-{ S }_{ n-1 }$$

                   $$=2{ n }^{ 2 }+5n-(2{ n }^{ 2 }+n-3)$$

                   $$=2{ n }^{ 2 }+5n-2{ n }^{ 2 }-n+3$$

                   $$=4n+3$$
  • Question 5
    1 / -0
    Find the sum of all even integers between $$101$$ and $$999.$$
    Solution
    $$\textbf{Step -1: Find the number of terms.}$$
                    $$\text{Even integers between }101\text{ and }999 \text{ are:}$$
                    $$102,104,106,\ldots998.$$
                    $$\text{It is an A.P. sequence whose first term}(a)=102,$$
                    $$\text{common difference}(d)=2$$
                    $$\text{and last term}(l)=998.$$
                    $$\text{Let this sequence has }n \text{ terms.}$$
                    $$\therefore a_n=l=a+(n-1)d$$
                    $$\Rightarrow 998=102+(n-1)2$$
                    $$\Rightarrow 2n-2=896$$
                    $$\Rightarrow 2n=898$$
                    $$\Rightarrow n=449$$
    $$\textbf{Step -2: Find the required sum.}$$
                    $$\because \text{Sum of an A.P.}(S_n)=\dfrac{n}{2}(a+l).$$
                    $$\therefore\text{The sum of all even integers between }101\text{ and }998,$$
                    $$=\dfrac{449}{2}(102+998)$$
                    $$=\dfrac{449\times1100}{2}$$
                    $$=449\times550$$
                    $$=246950$$
    $$\textbf{Hence,The correct option is A.}$$
  • Question 6
    1 / -0
    Which term of the A.P.,  $$84, 80, 76,..$$ is $$0?$$
    Solution

    The given sequence is an AP in which first term $$a=84$$ and common difference $$d=-4$$.

    We have to find  value of n for which $$a_n$$ is $$0$$.

    Then,
    $$a+(n-1)d=0$$
    $$\Rightarrow 84+(n-1)\times-4=0$$
    $$\Rightarrow 88-4n=0$$

    $$\Rightarrow n=22$$
    Hence, $${22}^{nd}$$ term is $$0$$.
  • Question 7
    1 / -0
     Find the sum of first $$n$$ odd natural numbers.
    Solution
    We have to find sum of the series : $$1+3+5+...$$ to $$n$$ terms
    Clearly, terms of the given series form an AP with first term $$a=1$$ and common difference $$d=2$$. 
    Therefore, $$S_n=\dfrac n2[2a+(n-1)d]$$
    $$\Rightarrow S_n=\dfrac n2[2\times1+(n-1)\times2]$$
    $$\Rightarrow S_n=\dfrac n2[2+2n-2]$$
    $$\Rightarrow S_n=n^2$$
  • Question 8
    1 / -0
    Find the $$n^{th}$$ term of the sequence $$m -1, m - 3, m - 5,.....$$
    Solution
    Clearly, the given sequence is an AP with first term $$a=m-1$$ and common difference $$d=(m-3)-(m-1)=-2$$.
    $$\therefore$$ nth term $$a_n=a+(n-1)d$$
    $$\Rightarrow a_n=(m-1)+(n-1)\times-2$$
               $$=m-1-2n+2$$
               $$=m-2n+1$$
  • Question 9
    1 / -0
    Find the $$12^{th}$$ term from the end of the arithmetic progression $$3, 5, 7, 9,...201?$$
    Solution
    Clearly, the given sequence is an AP with first term $$a=3$$ and common difference $$d=2$$.
    Let there are $$n$$ terms in this AP. Therefore,
    $$a_n=201\Rightarrow a+(n-1)d=201$$
    $$\Rightarrow 3+(n-1)2=201$$
    $$\Rightarrow (n-1)2=198$$
    $$\Rightarrow n-1=99$$
    $$\Rightarrow n=100$$
    Now $$12^{th}$$ term from end=$$(100-12+1)^{th}$$ term from beginning.
    $$\Rightarrow 12^{th}$$ term from end=$$89^{th}$$ term from beginning=$$3+(89-1)\times2=3+176=179.$$


  • Question 10
    1 / -0
    Check if the series is an $$AP.$$ Find the common difference $$d$$. Also, find the next three terms.

    $$-10, -6, -2 , 2.....$$. 
    Solution
    Given series is $$-10, -6,-2,2,.......$$
    Clearly, the given sequence is an AP with first term $$a=-10$$ and common difference $$d=-6-(-10)=4$$
    $$n^{th}$$ term $$=a_n=a+(n-1)d$$
    $$\Rightarrow  a_5=a+4d=-10+4\times4=6$$
    $$\Rightarrow a_6=a+5d=-10+5\times4=10$$
    $$\Rightarrow a_7=a+6d=-10+6\times4=14$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now