$${\textbf{Step 1: Write
multiple of 9 as A}}{\text{.P}}{\textbf{. having common difference as 9.}}$$
$${\text{Multiple of 9
between 300 and 700 are as follows:}}$$
$$306,315,324, \ldots ,693$$
$${\text{So, the formed
A}}{\text{.P}}{\text{. is}}$$ $$306,315,324,
\ldots ,693$$
$${\text{Where,}}$$ $$a = 306:$$ $${\text{First
term of A}}{\text{.P}}{\text{.}}$$
$$d = 9:$$ $${\text{common difference of
A}}{\text{.P}}{\text{.}}$$
$$l = 639:$$ $${\text{Last term of A}}{\text{.P}}{\text{.}}$$
$${\text{Now we know that,
formula for }}{{\text{n}}^{{\text{th}}}}{\text{ term of an
A}}{\text{.P}}{\text{. is given by,}}$$
$${a_n} = a + \left( {n - 1}
\right)d \ldots \left( 1 \right)$$
$${\text{Where,}}$$ $$a = $$
$${\text{First term of
A}}{\text{.P}}{\text{.,}}$$ $$d = $$ $${\text{common
difference of A}}{\text{.P}}{\text{.,}}$$ $${a_n} = $$ $${{\text{n}}^{{\text{th}}}}{\text{term
of an A}}{\text{.P}}{\text{.}}$$
$$n = $$
$${\text{Total number of terms in
A}}{\text{.P}}{\text{.}}$$
$${\text{Substitute the
known values in equation }}\left( 1 \right)$$
$$ \Rightarrow 693 = 306 +
\left( {n - 1} \right)9$$
$$ \Rightarrow 693 - 306 =
\left( {n - 1} \right)9$$
$$ \Rightarrow 387 = \left(
{n - 1} \right)9$$
$$ \Rightarrow \left( {n -
1} \right) = \dfrac{{387}}{9}$$
$$ \Rightarrow n - 1 = 43$$
$$ \Rightarrow n = 44$$
$${\text{There are total 44
numbers between 300 to 700 which are multiple of 9}}{\text{.}}$$
$${\textbf{Step 2: Find the
sum of multiple of 9 lying between 300 to 700.}}$$
$${\text{Sum of the n terms
of an A}}{\text{.P}}{\text{. having first term 'a' and last term 'l' is given
by, }}$$
$${S_n} = \dfrac{n}{2}\left(
{a + l} \right)$$
$$ \Rightarrow {S_{44}} = \dfrac{{44}}{2}\left(
{306 + 693} \right)$$
$$ \Rightarrow {S_{44}} =
22\left( {999} \right)$$
$$ \Rightarrow {S_{44}} =
21978$$
$${\textbf{Final Answer:
Hence, sum of all multiple of 9 lying between 300 to 700 is 21978.}}$$
$${\textbf{Therefore, option (A) 21978 is correct answer.}}$$