Self Studies

Arithmetic Progressions Test - 40

Result Self Studies

Arithmetic Progressions Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The $$6^{th}$$ and $$17^{th}$$ terms of an AP are $$19$$ and $$41$$ respectively, find the $$40^{th}$$ term.
    Solution
    Let  $$a$$ and $$d$$ be the first term and the common difference of the given AP respectively. Then,
    $$a_6=19\Rightarrow a+5d=19$$                    $$...(1)$$
    $$a_{17}=41\Rightarrow a+16d=41$$               $$ ...(2)$$
    On subtracting $$(2)$$ from $$(1),$$ we get
    $$11d=22\Rightarrow d=2$$
    Putting $$d=2$$ in $$(1),$$ we get
    $$a=19-5\times2=9$$
    Now, $$a_{40}=a+39d=9+39\times2=87$$              

  • Question 2
    1 / -0
    Find the second term and $$nth$$ term of an AP whose $$6th$$ term is $$12$$ and $$8th$$ term is $$22.$$
    Solution
    Let  $$a$$ and $$d$$ be the first term and the common difference of the given AP respectively. Then,
    $$a_6=12\Rightarrow a+5d=12$$                    ...(1)
    $$a_8=22\Rightarrow a+7d=22$$                ...(2)
    On subtracting (2) from (1), we get
    $$2d=10\Rightarrow d=5$$
    Putting $$d=5$$ in (1), we get
    $$a=12-5\times5=-13$$
    Now, $$a_2=a+d=-13+5=-8$$ and
    $$a_n=a+(n-1)d$$
    $$=-13+(n-1)\times5$$
    $$=5n-18$$            

  • Question 3
    1 / -0
    Find the sum of all multiples of $$9$$ lying between $$300$$ and $$700$$.
    Solution

    $${\textbf{Step 1: Write multiple of 9 as A}}{\text{.P}}{\textbf{. having common difference as 9.}}$$

                   $${\text{Multiple of 9 between 300 and 700 are as follows:}}$$

                   $$306,315,324, \ldots ,693$$

                   $${\text{So, the formed A}}{\text{.P}}{\text{. is}}$$ $$306,315,324, \ldots ,693$$

                   $${\text{Where,}}$$ $$a = 306:$$ $${\text{First term of A}}{\text{.P}}{\text{.}}$$

                   $$d  = 9:$$ $${\text{common difference of A}}{\text{.P}}{\text{.}}$$

                   $$l = 639:$$ $${\text{Last term of A}}{\text{.P}}{\text{.}}$$

                   $${\text{Now we know that, formula for }}{{\text{n}}^{{\text{th}}}}{\text{ term of an A}}{\text{.P}}{\text{. is given by,}}$$

                   $${a_n} = a + \left( {n - 1} \right)d \ldots \left( 1 \right)$$

                   $${\text{Where,}}$$ $$a = $$ $${\text{First term of A}}{\text{.P}}{\text{.,}}$$ $$d = $$ $${\text{common difference of A}}{\text{.P}}{\text{.,}}$$ $${a_n} = $$ $${{\text{n}}^{{\text{th}}}}{\text{term of an A}}{\text{.P}}{\text{.}}$$ 

                   $$n = $$ $${\text{Total number of terms in A}}{\text{.P}}{\text{.}}$$

                   $${\text{Substitute the known values in equation }}\left( 1 \right)$$

                   $$ \Rightarrow 693 = 306 + \left( {n - 1} \right)9$$

                   $$ \Rightarrow 693 - 306 = \left( {n - 1} \right)9$$

                   $$ \Rightarrow 387 = \left( {n - 1} \right)9$$

                   $$ \Rightarrow \left( {n - 1} \right) = \dfrac{{387}}{9}$$

                   $$ \Rightarrow n - 1 = 43$$

                   $$ \Rightarrow n = 44$$

                   $${\text{There are total 44 numbers between 300 to 700 which are multiple of 9}}{\text{.}}$$

    $${\textbf{Step 2: Find the sum of multiple of 9 lying between 300 to 700.}}$$

                   $${\text{Sum of the n terms of an A}}{\text{.P}}{\text{. having first term 'a' and last term 'l' is given by, }}$$

                   $${S_n} = \dfrac{n}{2}\left( {a + l} \right)$$

                   $$ \Rightarrow {S_{44}} = \dfrac{{44}}{2}\left( {306 + 693} \right)$$

                   $$ \Rightarrow {S_{44}} = 22\left( {999} \right)$$

                   $$ \Rightarrow {S_{44}} = 21978$$

    $${\textbf{Final Answer: Hence, sum of all multiple of 9 lying between 300 to 700 is 21978.}}$$

                                 $${\textbf{Therefore, option (A) 21978 is correct answer.}}$$

  • Question 4
    1 / -0
    Which of the following are $$AP's$$? If they form an $$AP$$, find the common difference $$d$$ and the first $$3$$ terms.
    $$3, 3 + $$$$\sqrt{2}$$, $$3 +$$ 2$$\sqrt{2}$$, $$3 + $$3$$\sqrt{2}$$,...
    Solution
    Given series is $$3,3+\sqrt2, 3+2 \sqrt 2, 3+3 \sqrt2,.......$$
    Clearly, the given sequence is an AP with first term $$a=3$$ and common difference $$d=3+\sqrt2-3=\sqrt2$$
    $$n^{th}\space term=a_n=a+(n-1)d$$
    $$\therefore a_5=a+4d=3+4\times\sqrt2=3+4\sqrt2$$
    $$a_6=a+5d=3+5\times\sqrt2=3+5\sqrt2$$
    $$a_7=a+6d=3+6\times\sqrt2=3+6\sqrt2$$
  • Question 5
    1 / -0
    In a garden bed, there are $$23$$ rose plants in the first row, twenty one in the second row, nineteen in the third row and so on. There are five plants in the last row. How many rows are there of rose plants?
    Solution
    Clearly, rose plants in the rows from an AP $$23,21,19,...,5$$ with first term $$a=23$$ and common difference $$d=-2$$.
    Let there be $$n$$ rows. Then,
    $$a_n=5\Rightarrow a+(n-1)d$$
    $$5= 23+(n-1)\times-2$$
    $$\therefore n=10$$
    Therefore, there are $$10$$ rows of rose plants.
  • Question 6
    1 / -0
    The sum of the first $$9$$ terms of an $$A.P$$ is $$81$$ and the sum of it's first $$20$$ terms is $$400.$$ Find the first term, the common difference and the sum upto $$15th$$ term.
    Solution
    Sum of the term $$ S_{n} = \dfrac{n}{2}\left[2\times a + \left(n-1 \right)d \right]$$
    Given sum of $$9$$ terms $$= 81$$
    $$ 81 = \dfrac{9}{2} \left[2a + \left(9-1 \right)d \right] ...(1)$$
    Sum of $$20$$ terms $$= 400$$
    $$ 400 = \dfrac{20}{2}\left[2a+\left(20-1 \right)d \right]...(2)$$
    $$\Rightarrow 81 = \dfrac{9}{2} \left[2a+8d\right]$$
    $$\Rightarrow 400 = \dfrac{9}{2} \left[2a+19d\right]$$
    $$\Rightarrow 162 = 18a+72d...(3)$$
    $$\Rightarrow 400=20a+190d....(4)$$
    Multiply eq$$(3)$$ by $$20$$ and and eq$$(4)$$ by $$18$$ and subtract both the equation
    $$\Rightarrow 360a+3420d = 7200$$
    $$\Rightarrow 360a+1440d = 3240$$
    $$1980d = 3690$$
    $$\Rightarrow d = 2$$
    Now substitute the $$d = 2$$ in eq$$(4)$$
    $$\Rightarrow 400= 20a+190\times 2$$
    $$\Rightarrow 400 = 20a+380$$
    $$\Rightarrow 20a = 20$$
    $$\Rightarrow a =1$$
    Sum of the 15th Term
    $$S_{15} = \dfrac{15}{2} \left[2\times 1+\left(15-1 \right)2 \right]$$
    $$S_{15} = \dfrac{15}{2} \left[2+\left(14\right)2 \right]$$
    $$S_{15} = \dfrac{15}{2}\left[2+28 \right]$$
    $$S_{15} = \dfrac{15}{2} \left[30\right]$$
    $$S_{15} = 15 \times 15 = 225$$
    Hence $$a =1 , d = 2 , S_{15} = 225$$



  • Question 7
    1 / -0
    A man saved Rs. $$16500$$ in ten years. In each year after the first he saved Rs. $$100$$ more than he did in the preceding year. How much did he save in the first year?
    Solution
    $$S_{n}=16500, n=10, d=100$$
    $$S_{n}=\dfrac{n}{2}[2a+(n-1)d]$$
    $$\therefore 16500=\dfrac{10}{2}[2a+(10-1)100]$$
    $$16500=5[2a+900]$$
    $$16500=10a+4500$$
    $$10a=12000$$
    $$\therefore a=1200$$
    Hence he saves Rs. $$1200$$ in first year.
  • Question 8
    1 / -0
    How many terms are there in the AP whose first and fifth terms are $$-14$$ and $$2$$ respectively and the sum of the terms is $$40?$$
    Solution
    Given, $$a=-14$$ and $$a_5=2$$.
    $$\Rightarrow a+4d=2\Rightarrow 4d=2+14\Rightarrow d=4$$
     Let the given sequence has $$n$$ terms. Therefore,
     $$S_n=\dfrac n2[2a+(n-1)d]=40$$           (given)
    $$\Rightarrow \dfrac n2[2\times-14+(n-1)4]=40$$ 
    $$\Rightarrow n[-14+(n-1)2]=40$$ 
    $$\Rightarrow n(2n-16)=40$$ 
    $$\Rightarrow n^2-8n-20=0$$ 
    $$\Rightarrow (n-10)(n+2)=0$$
    $$\Rightarrow n=10,-2$$
    But, $$n=-2$$ is not possible.
    Therefore $$n=10$$.
  • Question 9
    1 / -0
    Find $$a_{30} -a_{20}$$ for the $$AP$$ $$: a, a + d, a + 2d, a + 3d,...$$
    Solution
    Here the first term is $$a$$ and the common difference is $$d$$.
    $$n^{th}$$ term of the AP is given by,
     $$a_n=a+(n-1)d$$
    $$\therefore a_{20}=a+19d$$      ...$$(1)$$
    $$a_{30}=a+29d$$          ...$$(2)$$
    On subtracting $$(1)$$ from $$(2)$$, we get
    $$a_{30}-a_{20}=10d$$
  • Question 10
    1 / -0
    In an AP,
    Given $$a =5, d = 3,$$ $$a_n$$ $$= 50$$, find $$n$$ and $$S_n$$.
    Solution
    As we know nth term, $$a_n = a+(n-1)d$$ 
    & Sum of first $$n$$ terms,  $$S_n = \dfrac{n}{2} (2a+(n-1)d)$$, where $$a$$ & $$d$$ are the first term amd common difference of an AP.
    Given, $$a =5, d =3, a_n = 50$$
    $$\Rightarrow a + (n -1)d = 50$$
    $$\Rightarrow 5 + (n -1)3 = 50$$
    $$\Rightarrow 5 + 3n -3 = 50\Rightarrow 3n = 48\Rightarrow n =16$$
    $$\therefore S_{16} = \dfrac{16}{2} [2a + (16-1)d]=8[2\times5+15\times3]=440$$
    Hence, $$n=16,S_{16}=440$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now