Self Studies

Arithmetic Progressions Test - 43

Result Self Studies

Arithmetic Progressions Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The $$9th$$ term of an AP is $$499$$ and $$499th$$ terms is $$9.$$ The term which is equal to zero is 
    Solution
    $$a_{9}=a+8d$$
    $$a_9=499  (given)$$
    $$\therefore  a+8d=499.........(i)$$
    $$ a_{499}=a+498d$$
    $$a_{499}=9$$
    $$\therefore  a+498d=9.........(ii)$$
    Subtract (i) from (ii)
    $$\Rightarrow 490 d = - 490  $$
    $$\Rightarrow d = -1    $$
    substitute the value of $$d$$
    $$\Rightarrow a + 8(-1) = 499$$
     $$\Rightarrow  a = 507 $$
    $$\therefore$$ For $$ a_{n}=0$$
    $$ \Rightarrow a+(n-1)d=0$$
    $$ \Rightarrow 507+(n-1)(-1)=0$$
    $$ \Rightarrow 507=n-1$$
    $$ \Rightarrow n=508$$
    So, $$508^{th}$$ term is equal to zero.
  • Question 2
    1 / -0
    $$8^{th}$$ term of series $$\displaystyle 2\sqrt{2}+\sqrt{2}+0+......$$ will be
    Solution
    Given series is : $$2\sqrt2+ \sqrt2+0+.......$$
    Then, $$ a=2\sqrt{2},d=(\sqrt 2-2\sqrt 2)=-\sqrt{2}$$
    $$ a_{8}=a+7d$$
    $$\therefore 2\sqrt{2}+7\times (-\sqrt{2})$$
    $$\therefore a_{8}=-5\sqrt{2}$$
  • Question 3
    1 / -0
    Find the sum of all whole numbers divisible by $$5$$ but less than $$100$$.
    Solution
    All whole numbers divisible by $$5$$ but less then $$100$$ are
    $$0,5,10,15,20........95$$
    It is an A.P. with first term, common difference and last term as $$0, 5$$ and $$95$$ respectively.
    $$a=0,d=5,a_n=95$$
    $$a_n=a+(n-1)d$$
    $$95=0+(n-1)5$$
    $$5n=100$$
    $$n=20$$
    Hence total numbers are $$=20$$
    Sum of numbers are
    $$S_{n}=\dfrac{n}{2}[a+(n-1)d]$$

    $$S_{20}=\dfrac{20}{2}[0+(20-1)5]$$

    $$S_{20}=10\times 95\\\ \ \ \ \ =950$$
    The sum of all natural number divisible by $$5$$ but less than $$100$$ is $$950$$.
  • Question 4
    1 / -0
    The $$4th$$ term from the end of the AP
    $$-11, -8, -5, ....................49$$  is
    Solution
    Given series of AP:
    $$- 11, -8, -5,.......49$$
    New series : $$49,........-5,-8,-11$$
    In new series of AP first term $$a = 49,$$ common difference $$d = (-8) - (-5) = - 3$$
    $$\displaystyle a_{4}=a+3d=49+3(-3)=49-9=40$$
    $$\therefore $$ Option B is correct.
  • Question 5
    1 / -0
    If the common difference of an AP is $$-6,$$ then what is $$\displaystyle a_{16}-a_{12}?$$
    Solution
    Given, $$d=-6$$
    $$a_{16}=a+15d$$
    $$a_{12}=a+11d$$
    $$a_{16}-a_{12}=(a+15d)-(a+11d)=4d$$
    $$\therefore a_{16}-a_{12}=4\times -6=-24$$
  • Question 6
    1 / -0
    What is the sum of all 3 digit numbers that leave a remainder of '2' when divided by 3?
    Solution
    $$\textbf{Step1-Find sequence of an A.P according to question}$$
                  $$\text{The lowest 3 digit number is }$$$$101$$$$\text{ and the highest number is}$$ $$998$$.
                  $$\text{Therefore, the AP is }$$$$101,104,107, ....... , 998$$
                  $$\text{ where, the first term is }$$$$a=101$$, 
                  $$\text{common difference is $$d=104 - 101 = 3$$ and }$$
                  $$\text{n$^{th}$ term is }$$$$a_n=998$$

    $$\textbf{Step2-Find the total number of terms of sequence}$$
                   $$\text{Let us find the number of terms is n}$$
                   $$\text{We know that the n$^{th}$}$$ $$\text{term of AP is given by}$$
                   $$a_{n} = $$$$a+(n-1)d$$
                   $$\text{Now, substituting the values, we get:}$$
                   $$998=101+(n-1)3\\ \Rightarrow (n-1)3=998-101\\ \Rightarrow (n-1)3=897\\ \Rightarrow n-1=\dfrac { 897 }{ 3 } \\ \Rightarrow n-1=299\\ \Rightarrow n=299+1\\ \Rightarrow n=300$$

    $$\textbf{Step3-Find sum of 300 terms of an A.P}$$
                   $$\text{We know }$$
                   $$S=\dfrac {n}{2}$$$$\text{(1st term + last term) }$$
                   $$\text{Therefore, we have:}$$
                   $$S=\dfrac { 300 }{ 2 } (101+998)$$
                   $$S=150\times 1099$$
                   $$S=164850$$


    $$\textbf{Hence, the sum of all 3 digit numbers that leave a remainder of 2 when divided by 3 is 164,850.}$$
  • Question 7
    1 / -0
    The sum of all odd integers between $$2$$ and $$50$$ divisible by $$3$$ is
    Solution
    The odd intergers between 2 and 50 divisible by 3 are $$3, 9, 15,......45$$
    This sequence forms an AP with first term $$a=3$$ and common difference $$d=9-3=6$$
    Since, $$l=a+(n-1)d $$
    $$\Rightarrow 45=3+(n-1)6 $$
    $$\Rightarrow 42=(n-1)6 $$
    $$\Rightarrow 7=n-1 $$
    $$\Rightarrow n=8 $$
    Number of terms in given sequence are 8.
    $$ S_n=\dfrac n2(a+l) $$
    $$\Rightarrow S_n=\dfrac{8}{2}(3+45)$$
    $$\Rightarrow S_n=4(48)$$
    $$\Rightarrow S_n= 192$$
    $$\therefore $$ Option A is correct.
  • Question 8
    1 / -0
    If the $$5$$th term of an A.P is eight times the first term and $$8$$th term exceeds twice the $$4$$th term by $$3$$, then the common difference is
    Solution
    $$n^{th}$$ term of an AP is given as,

    $$t_n=a+(n-1)d$$

    Where $$a$$ and $$d$$ are first term and common difference respectively.

    According to the given condition,

    Thus,

     $${ t }_{ 5 } = a + 4d$$

    $${ t }_{ 1 } = a$$

    $${ t }_{ 8 } = a + 7d$$

    $$ { t }_{ 4 } = a + 3d$$

    Given, $${ t }_{ 5 } = 8{ t }_{ 1 }$$ 

    $$\Longrightarrow  a+ 4d= 8a\\ \Longrightarrow \quad 4d= 7a\\ \Longrightarrow d= \dfrac { 7a }{ 4 } $$

    Also given, $${ t }_{ 8 }$$ $$-2{ t }_{ 4 } = 3$$

    $$\Longrightarrow a+ 7d- 2(a+ 3d)= 3\\ \Longrightarrow  d - a= 3\\ $$

    Substituting $$d= \dfrac { 7a }{ 4 } $$ in the above equation, 

    $$\dfrac{7a}{4}-a=3$$

    $$\dfrac{3a}{4}=3$$

    we get $$a = 4$$ and hence, $$d = 7$$.

  • Question 9
    1 / -0
    If $$9^{th}$$ term of an A.P. is $$47$$ and $$16^{th}$$ term is $$82$$, then the general term is
    Solution
    $$a_9=a+8d=47$$........(1)
    $$a_{16}=a+15d=82$$.....(2)
    Subtract eq (1) by (2)
    $$7d=35$$
    $$\therefore d=5$$
    $$a+8d=47$$
    $$a+8\times 5=47$$
    $$\therefore a=7$$
    Hence general term is $$ a_n = a+(n-1)d = 5n+2 $$
  • Question 10
    1 / -0
    Find $${a}_{25}-{a}_{15}$$ for the A.P $$-6, -10, -14, -18,..........$$
    Solution
    Given series is: $$-6,-10,-14,-18.....$$
    $$a=-6, d=-4$$
    As we know $$nth$$ term, $$a_n = a+(n-1)d$$
    $$\therefore$$ $$a_{25}=a+24d$$
    & $$a_{15}=a+14d$$
    $$a_{25}-a_{15}=(a+24d)-(a+14d)=10d$$
    In the following series $$d=-4$$
    $$\therefore a_{25}-a_{15}=10\times (-4)=-40$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now