$$\textbf{Step1-Find sequence of an A.P according to question}$$
$$\text{The lowest 3 digit number is }$$$$101$$$$\text{ and the highest number is}$$ $$998$$.
$$\text{Therefore, the AP is }$$$$101,104,107, ....... , 998$$
$$\text{ where, the first term is }$$$$a=101$$,
$$\text{common difference is $$d=104 - 101 = 3$$ and }$$
$$\text{n$^{th}$ term is }$$$$a_n=998$$
$$\textbf{Step2-Find the total number of terms of sequence}$$
$$\text{Let us find the number of terms is n}$$
$$\text{We know that the n$^{th}$}$$ $$\text{term of AP is given by}$$
$$a_{n} = $$$$a+(n-1)d$$
$$\text{Now, substituting the values, we get:}$$
$$998=101+(n-1)3\\ \Rightarrow (n-1)3=998-101\\ \Rightarrow (n-1)3=897\\ \Rightarrow n-1=\dfrac { 897 }{ 3 } \\ \Rightarrow n-1=299\\ \Rightarrow n=299+1\\ \Rightarrow n=300$$
$$\textbf{Step3-Find sum of 300 terms of an A.P}$$
$$\text{We know }$$
$$S=\dfrac {n}{2}$$$$\text{(1st term + last term) }$$
$$\text{Therefore, we have:}$$
$$S=\dfrac { 300 }{ 2 } (101+998)$$
$$S=150\times 1099$$
$$S=164850$$
$$\textbf{Hence, the sum of all 3 digit numbers that leave a remainder of 2 when divided by 3 is 164,850.}$$