$${\textbf{Step -1: Write three digit multiple of 6 as
A.P. having common difference as 6.}}$$
$${\text{Multiple of 6
between 100 and 999 are as follows:}}$$
$$102,315,324, \ldots ,996$$
$${\text{So, the formed
A}}{\text{.P}}{\text{. is}}$$ $$102,315,324,
\ldots ,996$$
$${\text{Where,}}$$ $$a = 102:$$ $${\text{First
term of A}}{\text{.P}}{\text{.}}$$
$$d = 6:$$ $${\text{common difference of A}}{\text{.P}}{\text{.}}$$
$$l = 996:$$ $${\text{Last term of A}}{\text{.P}}{\text{.}}$$
$${\text{Now we know that,
formula for }}{{\text{n}}^{{\text{th}}}}{\text{ term of an
A}}{\text{.P}}{\text{. is given by,}}$$
$${a_n} = a + \left( {n - 1}
\right)d \ldots \left( 1 \right)$$
$${\text{Where,}}$$ $$a = $$
$${\text{First term of
A}}{\text{.P}}{\text{.}}$$
$$d = $$ $${\text{common
difference of A}}{\text{.P}}{\text{.}}$$
$${a_n} = $$ $${{\text{n}}^{{\text{th}}}}{\text{term
of an A}}{\text{.P}}{\text{.}}$$
$$n = $$
$${\text{Total number of terms in
A}}{\text{.P}}{\text{.}}$$
$${\textbf{Step -2: Substitute the known values in equation
}}\left( \mathbf1 \right)$$
$$ \Rightarrow 996 = 102 +
\left( {n - 1} \right)6$$
$$ \Rightarrow 996 - 102 =
\left( {n - 1} \right)6$$
$$ \Rightarrow 894 = \left(
{n - 1} \right)6$$
$$ \Rightarrow \left( {n -
1} \right) = \dfrac{{894}}{6}$$
$$ \Rightarrow n - 1 = 149$$
$$ \Rightarrow n = 149 + 1$$
$$ \Rightarrow n = 150$$
$${\textbf{Therefore,
option B. 150 is correct answer.}}$$