Self Studies

Arithmetic Progressions Test - 53

Result Self Studies

Arithmetic Progressions Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the arithmetic series, find the sum of the first $$n$$ terms if the first term is $$-11$$, the common difference is $$4$$ and the $$n^{th}$$ term is $$137.$$
    Solution
    First term: $$a = -11$$
    Last term, $$l = 137$$
    $$d = 4$$
    $$a_{n}=a+(n-1)d$$
    $$137=-11+(n-1)4$$
    $$137+11+4=4n$$
    $$152=4n$$
    $$n = 38$$
    $$S_{n}=\dfrac{n}{2}[a+l]$$
    $$S_{38}=\dfrac{38}{2}[-11+137]$$
    $$S_{38}=19[126]$$
    $$S_{38}=2394$$
  • Question 2
    1 / -0
    Find the common difference in an arithmetic seres, where $$S_{15}=322.5$$ and the first is $$4$$.
    Solution
    $$S_{n}=\dfrac{n}{2}[t_1+t_n]$$
    $$\Rightarrow 322.5=\dfrac{15}{2}[4+t_n]$$
    $$\Rightarrow 322.5=7.5[4+t_n]$$
    $$\Rightarrow 43=4+t_n$$
    $$\Rightarrow t_n=39$$

    $$t_n = a+(n-1)d$$
    $$\Rightarrow39 = 4+(15-1)d$$
    $$\Rightarrow 35= 14d$$
    $$\Rightarrow d = 2.5$$
  • Question 3
    1 / -0
    Find $${a}_{20}$$ given that $${a}_{3}=9$$ and $${a}_{8}=24$$
    Solution
    In a arithmetic series $${ a }_{ n }=a+(n-1)d$$ where $$a$$ is the first term of the sequence, $$d$$ is the common difference, and $$n$$ is the number of the term to find.
    Since it is given that $${ a }_{ 3 }=9$$ and $$a_8=24$$
    These two terms are $$8-3=5$$ places apart, so, from the definition of a arithmetic sequence, we know that $$a_8=a_3+5d$$ and we can use this to solve for the value of the common difference $$d$$:
        $$a_8=a_3+5d$$
          $$24=9+5d$$
            $$5d=15$$
              $$d=3$$

      Since $$a_3=a+2d$$

            So, $$9=a+6$$
                $$a=9-6=3$$

      To get $${a}_{20}$$ ,

        $${a}_{20}=3+(20-1)(3)$$
          $$=60$$
  • Question 4
    1 / -0
    If the $$14^{th}$$ term of an arithmetic series is $$6$$ and $$6^{th}$$ term is $$14$$, then what is the $$95^{th}$$ term?
    Solution
    Given, $$14^{th}$$ term $$=6$$, $$6^{th}$$ term $$=14$$
    We know $$T_n=a+(n-1)d$$
    Therefore, $$6 = a + (14 - 1) d = a + 13d$$    ....(1)
    and $$14 = a + (6 - 1)d = a + 5d$$    ....(2)
    Subtracting equations (1) and (2),
    $$d=8d=-8\Rightarrow d=-1$$
    Putting this value in equation (1), we get
    $$6=a+13(-1)$$
    $$\Rightarrow a=6+13$$
    $$\Rightarrow a=19$$
    Thus $$T_{95} = a + (95 - 1)d$$
    $$= a + 94d$$
    $$= 19 - 94 = -75$$
  • Question 5
    1 / -0
    Find the sum of all natural numbers not exceeding $$1000$$, which are divisible by $$4$$ but not by $$8$$.
    Solution
    Natural Number divisible by $$4$$ but not $$8$$ are
    $$4,12,20,28,....996 $$
    $$996=4+(n-1)8$$          ($$n^{th}$$ term formula)
    $$249=1+(n-1)2$$          (divide both sides by 4)
    $$248=(n-1)2 \\ 124+1=n \\ n=125$$
    $$S_n=4+12+20+......till\ 125\ terms$$
    $$ \\ { S }_{ n }=4\left[ \cfrac { n }{ 2 } \left( 2a+(n-1)d \right)  \right] \\ { S }_{ n }=4\times \cfrac { 125 }{ 2 } \left[ 2\times 1+124\times 2 \right] \\ { S }_{ n }=250(2+248)\\ { S }_{ n }=62500$$
  • Question 6
    1 / -0
    What is the sum of the first $$40$$ even positive integers?
    Solution
    According to problem:
    $$a=2,$$ First term
    $$d=2,$$ common difference
    $$n=40,$$ number of terms
    $$\because~ S_{n}=\dfrac{n}{2} [2a+(n-1)d]=1640$$
    $$\implies S_{n}=\dfrac{40}{2} [2\times 2+(40-1)2]=1640$$
  • Question 7
    1 / -0
    How many 3 digit numbers are divisible by $$6$$ in all?
    Solution

    $${\textbf{Step -1: Write three digit multiple of 6 as A.P. having common difference as 6.}}$$

                   $${\text{Multiple of 6 between 100 and 999 are as follows:}}$$

                   $$102,315,324, \ldots ,996$$

                   $${\text{So, the formed A}}{\text{.P}}{\text{. is}}$$ $$102,315,324, \ldots ,996$$

                   $${\text{Where,}}$$ $$a = 102:$$ $${\text{First term of A}}{\text{.P}}{\text{.}}$$

                   $$d = 6:$$ $${\text{common difference of A}}{\text{.P}}{\text{.}}$$

                   $$l = 996:$$ $${\text{Last term of A}}{\text{.P}}{\text{.}}$$

                   $${\text{Now we know that, formula for }}{{\text{n}}^{{\text{th}}}}{\text{ term of an A}}{\text{.P}}{\text{. is given by,}}$$

                   $${a_n} = a + \left( {n - 1} \right)d \ldots \left( 1 \right)$$

                   $${\text{Where,}}$$ $$a = $$ $${\text{First term of A}}{\text{.P}}{\text{.}}$$ 

                   $$d = $$ $${\text{common difference of A}}{\text{.P}}{\text{.}}$$  

                   $${a_n} = $$ $${{\text{n}}^{{\text{th}}}}{\text{term of an A}}{\text{.P}}{\text{.}}$$ 

                   $$n = $$ $${\text{Total number of terms in A}}{\text{.P}}{\text{.}}$$

    $${\textbf{Step -2: Substitute the known values in equation }}\left( \mathbf1 \right)$$

                   $$ \Rightarrow 996 = 102 + \left( {n - 1} \right)6$$

                   $$ \Rightarrow 996 - 102 = \left( {n - 1} \right)6$$

                   $$ \Rightarrow 894 = \left( {n - 1} \right)6$$

                   $$ \Rightarrow \left( {n - 1} \right) = \dfrac{{894}}{6}$$

                   $$ \Rightarrow n - 1 = 149$$

                   $$ \Rightarrow n = 149 + 1$$

                   $$ \Rightarrow n = 150$$

    $${\textbf{Therefore, option B. 150 is correct answer.}}$$

  • Question 8
    1 / -0
    What is the tenth term of the arithmetic sequence whose first term is $$x$$ and whose third term is $$x + 6a$$?
    Solution
    Let $$a_1=x$$
    Given, $$a_3=x+6a$$
    Let $$n = 3$$
    We know, $$a_n=a_1+(n-1)d$$
    $$\therefore a_3=x+(3-1)d$$
    $$\therefore x+6a-x=2d$$
    $$\therefore \dfrac{6a}{2}=d$$
    $$\therefore d=3a$$
    Now use $$a_1=x, d = 3a, n = 10$$ in $$a_n=a_1+(n-1)d$$
    $$\therefore a_{10}=x+(10-1)3a$$
    $$\therefore a_{10}=x+27a$$
  • Question 9
    1 / -0
    $$-20, -16, -12, -8.....$$ is the sequence and each term is increased by $$4$$. Then which of the following could not be a term in the sequence?
    Solution

  • Question 10
    1 / -0
    The sum of four numbers in AP is $$176$$. The product of 1st and last is $$1855$$. The mean of middle two is 
    Solution
    Let the numbers in A.P. be $$ (a-3d), (a-d), (a+d), (a+3d)$$
    $$\therefore (a-3d)+(a-d)+(a+d)+(a+3d)=176$$
    $$\Rightarrow 4a=176$$
    $$\therefore a=44$$
    $$\therefore$$ The mean of middle two is:
    $$=\dfrac{(a-d)+(a+d)}{2}$$
    $$=a=44$$                           
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now