Self Studies

Arithmetic Progressions Test - 56

Result Self Studies

Arithmetic Progressions Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If fourth therm of an $$A.P$$ is thrice its first term and seventh term is one less than the twice of third term, then its common difference is ?
    Solution

    Let a be the first term and d be the common difference.

    The 4th term can be written as ‘a+3d’ and 7th term can be written as ‘a+6d’.

    As per the question,

    1.       a+3d = 3a → 2a-3d=0

    2.       a+6d=2(a+2d)+1 →a+6d=2a+4d+1 a-2d+1=0

    Now solve the 2 quations, you will get:

    d=2 & a=3

    Hence, the first term is 3 and the common difference is 2.

    The AP would be,

    3,5,7,9,11,…..

  • Question 2
    1 / -0
    Sum of first $$n$$ natural numbers is $$S_{1}$$, sum of first $$n$$ odd natural numbers is $$S_{2}$$, and sum of first $$n$$ even numbers is $$S_{3}$$. Then $$S_{1}:S_{2}:S_{3}$$=
    Solution
      $$ S_{n}^{{}}=\frac{n}{2}\left[ 2a+\left( n-1 \right)d \right] $$
     $$ S_{1}^{{}}=1+2+3+4+........n $$
     $$ a=1,d=1 $$
     $$ S_{1}^{{}}=\frac{n}{2}\left[ 2\left( 1 \right)+\left( n-1 \right)1 \right] $$
     $$ \,\,\,\,\,\,=\frac{n\left( n+1 \right)}{2} $$
     $$ S_{2}^{{}}=1+3+5+..........+n $$
     $$ a=1,d=2 $$
     $$ S_{2}^{{}}=\frac{n}{2}\left[ 2\left( 1 \right)+\left( n-1 \right)2 \right] $$
     $$ \,\,\,\,\,\,\,=\frac{n}{2}\left[ 2n \right] $$
     $$ \,\,\,\,\,={{n}^{2}} $$
     $$ S_{3}^{{}}=2+4+6+..........n $$
     $$ a=2,d=2 $$
     $$ S_{3}^{{}}=\frac{n}{2}\left[ 2\left( 2 \right)+\left( n-1 \right)2 \right] $$
     $$ \,\,\,\,\,=n\left[ 2+n-1 \right] $$
     $$ \,\,\,\,\,=n\left( n+1 \right) $$
     $$ S_{1}^{{}}:S_{2}^{{}}:S_{3}^{{}} $$
     $$ \frac{n\left( n+1 \right)}{2}:{{n}^{2}}:n\left( n+1 \right) $$
     $$ \Rightarrow \frac{n+1}{2}:n:n+1 $$
     $$ \Rightarrow \left( n+1 \right):2n:2\left( n+1 \right) $$

  • Question 3
    1 / -0
    Sum of the first $$n$$ terms of an A.P. having first term $$a$$ and last term $$\ell$$ is ____
    Solution
    Given: First term of an A.P $$= a$$ 
                Last term $$=2 l $$

    $$\therefore$$  $$l = a+(n-1)d$$       $$...(1)$$

    Sum of $$n$$ terms $$=\dfrac{n}{2}(2a+(n-1)d)$$

                               $$=\dfrac{n}{2}(a+a+(n-1)d) $$

                               $$=\dfrac{n}{2}(a+l)$$         [From $$(1)$$]
  • Question 4
    1 / -0
    If the first, second and last term of an $$A.P.$$ are $$a,\ b$$ and $$2a$$ respectively. then its sum is
    Solution
    Common difference $$=b-a$$
    As we know the nth term, $$a_n = a+(n-1)d$$, where a and d are the first term and common difference respectively.
    $$\therefore 2a=a+(n-1)(b-a)$$
    $$\Rightarrow \dfrac{a}{b-a}=n-1$$
    $$\Rightarrow \dfrac{a}{b-a}+1=n$$
    $$\Rightarrow \dfrac{a+b-a}{b-a}=n$$
    $$\Rightarrow \dfrac{b}{b-a}=n$$
    $$\therefore$$ Sum of $$AP=\dfrac{n}{2}\left[ a+2a\right]$$
    $$=\dfrac{3ab}{2(b-a)}$$
  • Question 5
    1 / -0
    If the ratio of $${n^{th}}$$ terms of two A.P.'s is $$\left( {2n + 8} \right):\left( {5n - 3} \right)$$, then the ratio of the sums of their $$n$$ terms is 


    Solution
    Given ratio of $$n^{th}$$ terms of A.P.:
    $$(2n+8):(5n-3)=\dfrac{2n-2+2+8}{5n-5+5-3}=\dfrac{10+(n-1)\times2}{2+(n-1)\times5}$$
    Since $$n^{th}$$ terms of an A.P. is $$t_n=a+(n-1)d$$
    For the A.P. in numerator, $$a_1=10$$ and $$d_1=2$$ and denominator $$a_2=2$$ and $$d_2=5$$
    Also, Sum of n terms of an A.P. is $$S_n=\dfrac{n}{2}[2a+(n-1)d]$$
    Sum of n terms of the A.P. in numerator $$=\dfrac{n}{2}[2\times10+(n-1)\times2]$$
    Sum of n terms of the A.P. in denominator $$=\dfrac{n}{2}[2\times2+(n-1)\times5]$$

    Then, the ratio of the sums of their nterms is $$\dfrac{\dfrac{n}{2}[20+2(n-1)]}{\dfrac{n}{2}[4+5(n-1)]}=\dfrac{2n+18}{5n-1}=(2n+18):(5n-1)$$
  • Question 6
    1 / -0
    A man saved Rs. $$200$$ in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. $$40$$ more than the saving of immediately previous month. His total saving from the start of service will be Rs. $$11040$$ after.
    Solution
    $$\dfrac{\overset { 1st }{ Month } }{200}\ \dfrac{\overset { 2nd }{ Month } }{200}\ \dfrac{\overset { 3rd }{ Month } }{200} \ \dfrac{\overset { 4th }{ Month } }{240}\ \dfrac{\overset { 5th }{ Month } }{280}$$ 
    So let $$n$$ be the number of monthe.
    Final savings $$=11040$$
    So $$\underbrace { 200+200 } +200+240+280+.... =11040$$.
    $$\Rightarrow 200+240+280+...+200+ (n-1)40=11040-400=10640$$
    Here $$a=200, d=40$$.
    We know $$a+ (a+d)+....+af(n-1)d= \dfrac{n}{2} (2a+(n-1)d)$$
    $$\Rightarrow \dfrac{n}{2} (2 \times 200+ (n-1) \times 40)=10640$$
    $$\Rightarrow n(n+q) =532$$
    $$\Rightarrow n^{2}+qn-532=0$$.
    $$\Rightarrow (n+28)(n-19)=0$$.
    $$\Rightarrow n=19$$ (Since $$n=-28$$ not possible)
  • Question 7
    1 / -0
    For the A.P. if $$a = 7$$ and $$d = 2.5 ,$$ then $$t _ { 12 } = ?$$
    Solution

    $$  {\textbf{Step - 1: Find 12th term}} $$

                    $$  {\text{Given, a = 7 and d = 2}}{\text{.5}} $$

                    $$  {\text{a = first term and }} $$

                    $$  {\text{d =  difference between two terms}} $$

                    $$  {\text{It is known that in an AP}}\;{{\text{n}}^{th}}{\text{ term will be}} $$

                    $$  {{\text{t}}_n}{\text{ = a + (n - 1)d}} $$

                    $$  {\text{Put the value of n as 12}}{\text{.}} $$

                    $$  \text{t}_{12} = 7 + (12 - 1)(2.5) $$

                    $$  { = 7 + 11 \times 2.5}  $$

                    $$  { = 34.5} $$

    $$  {\textbf{Hence, the correct answer is option B}}{\text{.}} $$ 

  • Question 8
    1 / -0
    Three  numbers are in $$AP$$ such that their sum is $$18$$ and sum of their squares is $$158$$. The greatest number among them is
    Solution
    Let the nos be , $$ a-d, a, a+d$$ then $$ a-d+a+a+d = 18 $$
    $$ 3a = 18 \Rightarrow a = 6 $$
    $$ \therefore 6-d, 6, 6+d $$
    Sum of square = 158 
    $$ (6-d)^{2}+6^{2}+(6+d)^{2} = 158 $$
    $$ 6^{2}+d^{2}-12d+6^{2}+6^{2}+d^{2}+12d = 158 $$
    $$ 108+2d^{2} = 158 $$
    $$ 2d^{2} = 50 $$
    $$ d^{2} = 25 \Rightarrow d = \pm 5 $$
    when $$d=+5$$, Numbers are : 1, 6, 11
    when $$d=-5$$, Numbers are : 11, 6, 1
    Greatest : 11 
  • Question 9
    1 / -0
    Find the sum of $$2,4,6,8,,,........2n$$
    Solution
    The given sequence is $$2,4,6,8,..... 2n$$
    $$\therefore a= 2, d = 2$$ & $$a_k= 2n$$
    $$\therefore 2n = a+(k-1)d $$
    $$\Rightarrow 2n = 2+(k-1)2$$
    $$\Rightarrow k = n$$
    Sum of $$n$$ terms $$=\dfrac{k}{2}(2a+(k-1)d)$$
          $$= \dfrac {n}{2} \times [2(2)+(n-1)(2)] $$
            $$=n(n+1)$$

  • Question 10
    1 / -0
    The $$27^{th}$$ term of AP $$7,9,11,13,15,17,19,\ldots$$ is  
    Solution
    Given series is $$7,9,11,13,15,17,19,\dots$$
    $$a=7$$
    $$d=9-7$$
       $$=2$$

    Formula for $$n^{th}$$ term of an AP whose first term is $$a$$ and common difference is $$d$$ is given by,
    $$a_n=a+(n-1)d$$

    So, $$27^{th} $$ term is given as,
     $$a_{27}=7 + (27-1)2$$
            $$=7+26\times2$$
            $$=7+52$$
            $$=59$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now