Self Studies

Arithmetic Progressions Test - 62

Result Self Studies

Arithmetic Progressions Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In an arithmetic progression, if $${ S }_{ n }=n(5+3n)\quad and\quad { t }_{ n }=32$$, then the value of n is
    [Note: $${ S }_{ n }$$ and $${ t }_{ n }$$ denote the sum of first n terms and $${ n }^{ th }$$ term of arithmetic progression respectively.]
    Solution

  • Question 2
    1 / -0
    If the sum of the three consecutive terms of A.P is $$48$$ and product of the first the last is $$252$$, and d=........
    Solution

  • Question 3
    1 / -0
    The sum of five consecutive odd numbers is 295. The smallest number is
  • Question 4
    1 / -0
    Let a, b, c be three distinct positive numbers which are in G.P, if $${ log }_{ c }a,{ log }_{ b }c,{ log }_{ a }b$$ are in A.P., then the common difference of the A.P is 
  • Question 5
    1 / -0
    The number of common terms in two AP's 2, 5, 8, 11,..., 179 and 3, 5, 7, 9, .. 101 are 
    Solution

  • Question 6
    1 / -0
    The sum of n terms of an AP is $$(3n^2 + 5n).$$ Which of its terms is 164?
    Solution
    Given sum of n terms is, 

    $${ S }_{ n }=3{ n }^{ 2 }+5n$$

    Put n=1, we get,
    $${ S }_{ 1 }=a_{ 1 }=3{ \left( 1 \right)  }^{ 2 }+5\left( 1 \right) $$
    $$\therefore a_{ 1 }=3+5$$
    $$\therefore a_{ 1 }=8$$

    Put n=2 in above equation, we get,
    $${ S }_{ 2 }={ a }_{ 1 }+{ a }_{ 2 }=3{ \left( 2 \right)  }^{ 2 }+5\left( 2 \right) $$
    $$\therefore 8+{ a }_{ 2 }=\left( 3\times 4 \right) +10$$
    $$\therefore 8+{ a }_{ 2 }=22$$
    $$\therefore { a }_{ 2 }=14$$

    $$d=14-8$$
    $$\therefore d=6$$

    Now, Given $${ a }_{ n }=164$$
    $${ a }_{ n }={ a }_{ 1 }+\left( n-1 \right) d$$

    $$\therefore 164=8+\left( n-1 \right) 6$$

    $$\therefore 156=6\left( n-1 \right) $$

    $$\therefore n-1=26$$

    $$\therefore n=27$$
  • Question 7
    1 / -0
    In an AP, the correct relation is
    Solution
    We know that, in an A.P., the common difference $$(d)$$ is the difference between any two consecutive terms.

    If we take one of the terms as $$a_{n-6}$$, we will need either $$a_{n-7}$$ or $$a_{n-5}$$ for finding the common difference.

    If we take $$a_{n-6}$$ and $$a_{n-5}$$, then,
    $$d={ a }_{ n-5 }-{ a }_{ n-6 }$$

    $$\therefore \ { a }_{ n-5 }={ a }_{ n-6 }+d$$

    Hence, option B is correct.
  • Question 8
    1 / -0
    In an A.P $$a_{n + 5} = 50$$ and $$a_{n + 1} = 38$$ then common difference
    Solution
    nth term of A.P. is given by,
    $${ a }_{ n }=a+\left( n-1 \right) d$$        (1)

    1) Put $$n=n+5$$ in (1), we get,
    $${ a }_{ n+5 }=a+\left( n+5-1 \right) d$$

    $$\therefore 50=a+\left( n+4 \right) d$$

    $$\therefore \dfrac { 50-a }{ d } =n+4$$

    $$\therefore n=\dfrac { 50-a }{ d } -4$$          (2)

    2) Put $$n=n+1$$ in (1), we get,
    $${ a }_{ n+1 }=a+\left( n+1-1 \right) d$$

    $$\therefore 38=a+nd$$

    $$\therefore n=\dfrac { 38-a }{ d } $$         (3)

    From (2) and (3), we get,
    $$\dfrac { 50-a }{ d } -4=\dfrac { 38-a }{ d }$$

    $$\dfrac { 50-a }{ d } -\dfrac { 38-a }{ d } =4$$

    $$\therefore \dfrac { 50-a-\left( 38-a \right)  }{ d } =4$$

    $$\therefore \dfrac { 50-a-38+a }{ d } =4$$

    $$\therefore \dfrac { 50-38 }{ d } =4$$

    $$\therefore \dfrac { 12 }{ d } =4$$

    $$\therefore d=3$$
  • Question 9
    1 / -0
    How many terms of the AP 6, 12, 18, 24,.... must be take to make the sum 816?
    Solution
    Given,
    $${ a }_{ 1 }=6$$
    $$d=12-6=6$$

    Since $$ S_n =816$$

    Sum of n terms of A.P. is given as,
    $$ S_n =\dfrac { n }{ 2 } \left[ 2a+\left( n-1 \right) d \right] $$

    $$\therefore 816=\dfrac { n }{ 2 } \left[ \left( 2\times 6 \right) +\left( n-1 \right) 6 \right] $$

    $$\therefore 1632=n\left[ 12+6n-6 \right] $$

    $$\therefore 1632=n\left[ 6n+6 \right] $$

    $$\therefore 1632=6{ n }^{ 2 }+6n$$

    $$\therefore 6{ n }^{ 2 }+6n-1632=0$$
    Divide both sides by 6, we get,

    $${ n }^{ 2 }+n-272=0$$

    $$\therefore n=\dfrac { -1\pm \sqrt { { \left( 1 \right)  }^{ 2 }-4\times 1\times \left( -272 \right)  }  }{ 2\times 1 } $$

    $$\therefore n=\dfrac { -1\pm \sqrt { 1+1088 }  }{ 2 } $$

    $$\therefore n=\dfrac { -1\pm \sqrt { 1089 }  }{ 2 } $$

    $$\therefore n=\dfrac { -1\pm 33 }{ 2 } $$

    Consider only positive root.

    $$\therefore n=\dfrac { -1+33 }{ 2 } $$

    $$\therefore n=\dfrac { 32 }{ 2 } $$

    $$\therefore n=16$$
  • Question 10
    1 / -0
    How many terms of the $$ AP -5, \frac{-9}{2}, -4, $$ .... will give the sum $$0$$?
    Solution
    Given,
    $${ a }_{ 1 }=-5$$
    $$d=\frac { -9 }{ 2 } -\left( -5 \right) $$
    $$=\frac { -9 }{ 2 } +5$$
    $$=\frac { 1 }{ 2 } $$

    Since $$ { { S }_{ n }= } 0$$

    Thus, sum of n terms of A.P. are calculated as,
    $$ { { S }_{ n }= } \frac { n }{ 2 } \left[ 2a+\left( n-1 \right) d \right] $$

    $$\therefore 0=\frac { n }{ 2 } \left[ \left( 2\times (-5) \right) +\left( n-1 \right) \frac { 1 }{ 2 }  \right] $$

    $$\therefore \left( 2\times (-5) \right) +\left( n-1 \right) \frac { 1 }{ 2 } =0$$

    $$-10+\frac { \left( n-1 \right)  }{ 2 } =0$$

    $$\frac { \left( n-1 \right)  }{ 2 } =10$$

    $$\left( n-1 \right) =20$$

    $$\therefore n=20+1$$

    $$\therefore n=21$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now