Self Studies

Introduction to Trigonometry Test - 26

Result Self Studies

Introduction to Trigonometry Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $${\rm{sin}}\,{\rm{\theta  + cosec\theta  = 2,}}\,{\rm{then}}\,\,{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{\theta  + cose}}{{\rm{c}}^{\rm{2}}}{\rm{\theta }}\,$$ is equal to:
    Solution
    We have,
    $$\sin \theta +\csc \theta=2$$

    On squaring both sides, we get
    $$(\sin \theta +\csc \theta)^2=2^2$$

    $$\sin^2 \theta +\csc^2 \theta+2\sin \theta\csc \theta=4$$

    $$\sin^2 \theta +\csc^2 \theta+2\times 1=4$$

    $$\sin^2 \theta +\csc^2 \theta+2=4$$

    $$\sin^2 \theta +\csc^2 \theta=2$$

    Hence, this is the answer.
  • Question 2
    1 / -0
    $$\sin x=\dfrac {\sqrt 3}{2}$$ find $$\sec x$$
    Solution
    $$\sin x=\dfrac {\sqrt 3}{2}\\\sin x=\sin 60^{\circ}\\x=60\\\sec 60=2$$
  • Question 3
    1 / -0
    Solve : $$\dfrac { 2tan{ 30 }^{ \circ  } }{ 1+{ tan }^{ 2 }{ 30 }^{ \circ  } } $$
    Solution
    We know that,
    $$tan(2A) = \dfrac{2tanA}{1+tan^2A}$$
    Putting A to be $$30^o$$
    We get,
    $$tan(60^o) = \dfrac{2tan30^o}{1+tan^230^o}$$

    Thus, C is the correct answer.
  • Question 4
    1 / -0
    If $$y=cos x$$ then $$x=\frac{\pi}{2}$$, $$y$$ is equal to:
    Solution
    $$y = \cos{x} \quad \left( \text{Given} \right)$$
    For $$x = \cfrac{\pi}{2}$$,
    $$y = \cos{\left( \cfrac{\pi}{2} \right)} = 0$$
    Hence the correct answer is $$0$$.
  • Question 5
    1 / -0
    $$\sin x=\dfrac 12\\\tan x=?$$
    Solution
    $$\sin x=\dfrac 12\\\sin x=\sin 30^{\circ}\\x=30\\\tan 30=\dfrac 1 {\sqrt3}$$
  • Question 6
    1 / -0
    sin0$$^0$$ . sin1$$^0$$ ..................... sin90$$^0$$ = 
    Solution
    Given,

    $$\sin 0 \cdot \sin 1.....................\cdot \sin 90$$

    Since,

    $$\sin 0=0$$

    Hence the product is $$0$$
  • Question 7
    1 / -0
    The value of $$\tan^{2}60^{o}$$ is:
    Solution
    $$\tan^{2}60^{o}=(\surd 3)^{2}=3$$
    $$(A)$$ is correct.
  • Question 8
    1 / -0
    Given
    $$\displaystyle \frac{\sin A}{si{nB}}=\frac{\sqrt{3}}{2}, \displaystyle \frac{\cos A}{\cos B}=\frac{\sqrt{5}}{2},\ 0<\displaystyle A,B<\frac{\pi}{2}$$, then
    Solution
    straight away we get $$\sin B = \dfrac{2sinA}{\sqrt{3}} \   and  \  \cos B = \dfrac{2cosA}{\sqrt{5}}$$

    now $$ \sin^{2}B + \cos^{2}B = 1$$

    so we get $$1 = 4(\dfrac{\sin^{2}A}{3} + \dfrac{\cos^{2}A}{5})$$

    we divide throughout by $$\cos^{2}A$$ and put $$\sec^{2}A = 1 + \tan^{2}A$$

    $$\dfrac{\sec^2A}4 = (\dfrac{\tan^{2}A}{3} + \dfrac{1}{5})$$

    $$\dfrac{\tan^{2}A}{3}=\dfrac{1+\tan^2A}4-\dfrac15$$

    $$\left (\dfrac13-\dfrac14\right )\tan^2 A=\dfrac14-\dfrac15$$

    $$\dfrac{\tan^2A}{12}=\dfrac{1}{20}$$

    $$\tan A=\sqrt{\dfrac{3}{5}}$$
  • Question 9
    1 / -0
    The maximum value of
    $$\cos x\,\left(\displaystyle \dfrac{\cos x}{1-\sin x}+\dfrac{1-\sin x}{\cos x}\right)$$ is 
    Solution
    $$\displaystyle f(x)=\cos x(\frac{\cos ^{2}x+1+\sin ^{2}x-2\sin x}{\cos x(1-\sin x)}) $$$$\displaystyle =\cos x(\frac{2(1-\sin x)}{\cos x(1-\sin x)}) =\cos x(\frac{2}{\cos x})=2$$
  • Question 10
    1 / -0
    If $$\text{cosec}\displaystyle A=4p+\frac{1}{16p}$$, then the value of $$\text{cosec}A+\cot A$$ is
    Solution
    $$\text{cosec}A=4p+\dfrac{1}{16p}$$

    $$\text{cosec}^{2}A=16p^{2}+\dfrac{1}{256p^{2}}+\dfrac{1}{2}$$ 
    Or 
    $$1+\cot ^{2}A=16p^{2}+\dfrac{1}{256p^{2}}+\dfrac{1}{2}$$
    Or 
    $$\cot ^{2}A=16p^{2}+\dfrac{1}{256p^{2}}-\dfrac{1}{2}$$
    Or 
    $$\cot ^{2}A=(4p-\dfrac{1}{16p})^{2}$$
    Or 
    $$\cot A=\pm(4p-\dfrac{1}{16p})$$...(i)
    Hence 
    If $$\cot A=(4p-\dfrac{1}{16p})$$
    Then

    $$\text{cosec}A+\cot A$$

    $$=4p+\dfrac{1}{16p}+(4p-\dfrac{1}{16p})$$

    $$=8p$$ ...(ii)

    If $$\cot A=-(4p-\dfrac{1}{16p})$$

    Then

    $$\text{cosec}A+\cot A$$

    $$=4p+\dfrac{1}{16p}-(4p-\dfrac{1}{16p})$$

    $$=\dfrac{2}{16p}$$

    $$=\dfrac{1}{8p}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now