I. $$x\cos { \theta } +y\sin { \theta } =a.....(i)$$
$$x\sin { \theta } -y\cos { \theta } =b.....(ii)$$
Squaring and adding equations $$(i)$$ and $$(ii)$$, we get
$${ \left[ x\cos { \theta } +y\sin { \theta } \right] }^{ 2 }+{ \left[ x\sin { \theta } -y\cos { \theta } \right] }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }$$
$${ x }^{ 2 }\cos ^{ 2 }{ \theta } +{ y }^{ 2 }\sin ^{ 2 }{ \theta } +2xy\sin { \theta } \cos { \theta } +{ x }^{ 2 }\sin ^{ 2 }{ \theta } +{ y }^{ 2 }\cos ^{ 2 }{ \theta } -2xy\sin { \theta } \cos { \theta } ={ a }^{ 2 }+{ b }^{ 2 }$$
$${ x }^{ 2 }\left[ \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } \right] +{ y }^{ 2 }\left[ \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } \right] ={ a }^{ 2 }+{ b }^{ 2 }$$
$${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }$$
which is (d).
II. $$x=\sec { \theta } +\tan { \theta } $$
$$y=\sec { \theta } -\tan { \theta } $$
$$xy=\left( \sec { \theta } +\tan { \theta } \right) \left( \sec { \theta } -\tan { \theta } \right) $$
$$xy=\sec ^{ 2 }{ \theta } -\tan ^{ 2 }{ \theta } $$
$$xy=1\left[ \because 1+\tan ^{ 2 }{ \theta } =\sec ^{ 2 }{ \theta } \right] $$
which is (b).
III. $$x\sec { \theta } +y\tan { \theta } =a$$ ....... $$(iii)$$
$$x\tan { \theta } +y\sec { \theta } =b$$ ......... $$(iv)$$
Squaring and then subtracting equation $$(iii)$$ from $$(iv)$$, we get
$$\left[ { x }^{ 2 }\sec ^{ 2 }{ \theta } +{ y }^{ 2 }\tan ^{ 2 }{ \theta } +2xy\sec { \theta } \tan { \theta } \right] -\left[ { x }^{ 2 }\tan ^{ 2 }{ \theta } +{ y }^{ 2 }\sec ^{ 2 }{ \theta } +2xy\sec { \theta } \tan { \theta } \right] ={ a }^{ 2 }-{ b }^{ 2 }$$
$${ x }^{ 2 }\left[ \sec ^{ 2 }{ \theta } -\tan ^{ 2 }{ \theta } \right] -{ y }^{ 2 }\left[ \sec ^{ 2 }{ \theta } -\tan ^{ 2 }{ \theta } \right] ={ a }^{ 2 }-{ b }^{ 2 }$$
$${ x }^{ 2 }-{ y }^{ 2 }={ a }^{ 2 }-{ b }^{ 2 }$$
which is (c).
IV. $$x=\cot { \theta } +\cos { \theta } $$
$$y=\cot { \theta } -\cos { \theta } $$
Squaring both equations, we get
$${ x }^{ 2 }=\cot ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } +2\cot { \theta } \cos { \theta } $$ ......... $$(v)$$
$${ y }^{ 2 }=\cot ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } -2\cot { \theta } \cos { \theta } $$ ......... $$(vi)$$
Subtract equation $$(vi)$$ from $$(v)$$, we get
$${ x }^{ 2 }-{ y }^{ 2 }=4\cot { \theta } \cos { \theta } $$
Squaring both sides, we get
$${ \left( { x }^{ 2 }-{ y }^{ 2 } \right) }^{ 2 }=16\cot ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } $$ ......... $$(vii)$$
Now, $$xy=\left( \cot { \theta } +\cos { \theta } \right) \left( \cot { \theta } -\cos { \theta } \right) $$
$$xy=\cot ^{ 2 }{ \theta } -\cos ^{ 2 }{ \theta } $$
$$xy=\cfrac { \cos ^{ 2 }{ \theta } }{ \sin ^{ 2 }{ \theta } } \left[ 1-\sin ^{ 2 }{ \theta } \right] $$
$$xy=\cot ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } $$ ......... $$(viii)$$
Substitute $$(viii)$$ in equation $$(vii)$$, we get
$${ \left( { x }^{ 2 }-{ y }^{ 2 } \right) }^{ 2 }=16xy$$
which is (a).
Therefore, I-d, II-b, III-c, IV-a