Self Studies

Introduction to Trigonometry Test - 28

Result Self Studies

Introduction to Trigonometry Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a\sin^{3}x+b\cos^{3}x=\sin x\cos x$$ and $$a\sin x=b\cos x$$ . If $$a,b,\sin x$$ and $$\cos x $$ all are non zero real numbers, then $$a^{2}+b^{2}=$$
    Solution
    Given, 
    $$a\ { \sin  }^{ 3 }x+b\ { \cos  }^{ 3 }x=\sin x \ \cos x ........... (1)$$
    $$a\sin x=b\cos x......... (2)$$ 
    Consider equation $$(1)$$, 
    $$a\ { \sin  }^{ 3}x+b \ { \cos  }^{ 3 }x=\sin x \ \cos x$$
    $$a\ {\sin }x\  { \sin  }^{ 2 }x+b \ { \cos  }^{ 3 }x=\sin x \ \cos x\\ b \ \cos x \ { \sin  }^{ 2 }x+b{ \cos  }^{ 3 }x=\sin x \ \cos x\\ b\cos x \ \left( { \sin  }^{ 2 }x+{ \cos  }^{ 2 }x \right) =\sin x \ \cos x$$  (using $$(2)$$)
    Solving this, we get 
    $$b=\sin x$$ 
    Then $$a =\dfrac{b \cos x}{\sin x} = \cos x$$
    Hence,
    $${ a }^{ 2 }+{ b }^{ 2 }={ \sin  }^{ 2 }x+{ \cos  }^{ 2 }x=1$$
  • Question 2
    1 / -0
    If $$m\cos^{2}A+n\sin^{2}A=p,$$ then $$\cot^{2}A=$$
    Solution
    $$m{ \cos }^{ 2 }A+n{ \sin }^{ 2 }A=p\\ m{ \cos }^{ 2 }A+n\left( 1-{ \cos }^{ 2 }A \right) =p\\ { \cos }^{ 2 }A=\cfrac { p-n }{ m-n } \\ m{ \cos }^{ 2 }A+n{ \sin }^{ 2 }A=p\\ m\left( 1-{ \sin }^{ 2 }A \right) +n{ \sin }^{ 2 }A=p\\ { \sin }^{ 2 }A=\cfrac { p-m }{ n-m } =\cfrac { m-p }{ m-n } \\ { \cot }^{ 2 }A=\cfrac { { \cos }^{ 2 }A }{ { \sin }^{ 2 }A } =\cfrac { p-n }{ m-p } $$
  • Question 3
    1 / -0
    Match the following columns with the values obtained for the solution.
    $$I.$$
    $$x\cos \theta+ y\sin \theta=a$$,
    $$x\sin \theta- y\cos \theta=b$$

    $$a)$$ $$(x^{2}-y^{2})^{2}=16xy$$

    $$II.$$
    $$x= \sec \theta+\tan\theta$$,
    $$y=\sec\theta-\tan\theta$$
    $$b)$$ $$xy = 1$$
    $$III.$$
    $$x\sec \theta+ y\tan \theta=a$$,
    $$x\tan \theta+ y\sec \theta=b$$

     $$c)$$ $$x^{2}-y^{2}=a^{2}-b^{2}$$


    $$IV.$$ 
    $$x=\cot\theta+\cos\theta$$,
    $$y=\cot\theta-\cos\theta$$

     $$d)$$ $$x^{2}+y^{2}=a^{2}+b^{2}$$


    Solution
    I.  $$x\cos { \theta  } +y\sin { \theta  } =a.....(i)$$
    $$x\sin { \theta  } -y\cos { \theta  } =b.....(ii)$$
    Squaring and adding equations $$(i)$$ and $$(ii)$$, we get
    $${ \left[ x\cos { \theta  } +y\sin { \theta  }  \right]  }^{ 2 }+{ \left[ x\sin { \theta  } -y\cos { \theta  }  \right]  }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }$$
    $${ x }^{ 2 }\cos ^{ 2 }{ \theta  } +{ y }^{ 2 }\sin ^{ 2 }{ \theta  } +2xy\sin { \theta  } \cos { \theta  } +{ x }^{ 2 }\sin ^{ 2 }{ \theta  } +{ y }^{ 2 }\cos ^{ 2 }{ \theta  } -2xy\sin { \theta  } \cos { \theta  } ={ a }^{ 2 }+{ b }^{ 2 }$$
    $${ x }^{ 2 }\left[ \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  \right] +{ y }^{ 2 }\left[ \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  \right] ={ a }^{ 2 }+{ b }^{ 2 }$$
    $${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }$$
    which is (d).

    II. $$x=\sec { \theta  } +\tan { \theta  } $$
    $$y=\sec { \theta  } -\tan { \theta  } $$
    $$xy=\left( \sec { \theta  } +\tan { \theta  }  \right) \left( \sec { \theta  } -\tan { \theta  }  \right) $$
    $$xy=\sec ^{ 2 }{ \theta  } -\tan ^{ 2 }{ \theta  } $$
    $$xy=1\left[ \because 1+\tan ^{ 2 }{ \theta  } =\sec ^{ 2 }{ \theta  }  \right] $$
    which is (b).

    III.  $$x\sec { \theta  } +y\tan { \theta  } =a$$ ....... $$(iii)$$
    $$x\tan { \theta  } +y\sec { \theta  } =b$$ ......... $$(iv)$$
    Squaring and then subtracting equation $$(iii)$$ from $$(iv)$$, we get
    $$\left[ { x }^{ 2 }\sec ^{ 2 }{ \theta  } +{ y }^{ 2 }\tan ^{ 2 }{ \theta  } +2xy\sec { \theta  } \tan { \theta  }  \right] -\left[ { x }^{ 2 }\tan ^{ 2 }{ \theta  } +{ y }^{ 2 }\sec ^{ 2 }{ \theta  } +2xy\sec { \theta  } \tan { \theta  }  \right] ={ a }^{ 2 }-{ b }^{ 2 }$$
    $${ x }^{ 2 }\left[ \sec ^{ 2 }{ \theta  } -\tan ^{ 2 }{ \theta  }  \right] -{ y }^{ 2 }\left[ \sec ^{ 2 }{ \theta  } -\tan ^{ 2 }{ \theta  }  \right] ={ a }^{ 2 }-{ b }^{ 2 }$$
    $${ x }^{ 2 }-{ y }^{ 2 }={ a }^{ 2 }-{ b }^{ 2 }$$
    which is (c).

    IV.  $$x=\cot { \theta  } +\cos { \theta  } $$
    $$y=\cot { \theta  } -\cos { \theta  } $$
    Squaring both equations, we get
    $${ x }^{ 2 }=\cot ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +2\cot { \theta  } \cos { \theta  } $$ ......... $$(v)$$
    $${ y }^{ 2 }=\cot ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } -2\cot { \theta  } \cos { \theta  } $$ ......... $$(vi)$$
    Subtract equation $$(vi)$$ from $$(v)$$, we get
    $${ x }^{ 2 }-{ y }^{ 2 }=4\cot { \theta  } \cos { \theta  } $$
    Squaring both sides, we get
    $${ \left( { x }^{ 2 }-{ y }^{ 2 } \right)  }^{ 2 }=16\cot ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } $$ ......... $$(vii)$$
    Now, $$xy=\left( \cot { \theta  } +\cos { \theta  }  \right) \left( \cot { \theta  } -\cos { \theta  }  \right) $$
    $$xy=\cot ^{ 2 }{ \theta  } -\cos ^{ 2 }{ \theta  } $$
    $$xy=\cfrac { \cos ^{ 2 }{ \theta  }  }{ \sin ^{ 2 }{ \theta  }  } \left[ 1-\sin ^{ 2 }{ \theta  }  \right] $$
    $$xy=\cot ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } $$ ......... $$(viii)$$
    Substitute $$(viii)$$ in equation $$(vii)$$, we get
    $${ \left( { x }^{ 2 }-{ y }^{ 2 } \right)  }^{ 2 }=16xy$$
    which is (a).
    Therefore, I-d, II-b, III-c, IV-a


  • Question 4
    1 / -0
    If $$\sin\theta+\cos\theta=a$$, then $$\sin^{4}\theta+\cos^{4}\theta=$$
    Solution
    $$ \sin \theta + \cos \theta = a $$
    $$ {\sin}^{4} \theta + {\cos}^{4} \theta = {({\sin}^{2} \theta + {\cos}^{2} \theta)}^{2} - 2{\sin}^{2} \theta {\cos}^{2} \theta $$
    = $$1$$ - $$ 2{\sin}^{2} \theta {\cos}^{2} \theta $$
    Now, $$ {(\sin \theta + \cos \theta)}^{2} = {\sin}^{2} \theta + {\cos}^{2} \theta + 2sin \theta \cos \theta $$
    $$ {a}^{2} = 1 +  2\sin \theta \cos \theta $$
    $$ \sin \theta \cos \theta = \frac{1}{2} ({a}^{2} - 1) $$
    Hence, substituting the value of $$ \sin \theta \cos \theta $$, we get,
    $$ {\sin}^{4} \theta + {\cos}^{4} \theta = 1 -  \frac{1}{2}{({a}^{2} - 1)}^{2} $$ 
  • Question 5
    1 / -0
    If $$\displaystyle \sec\alpha=5x+\frac{1}{20x} $$, then $$\sec\alpha+\tan\alpha$$ is equal to
    Solution
    Let $$\sec\alpha + \tan\alpha = a$$ ..... $$(i)$$

    It is known that, $$\sec^{2}\alpha - \tan^{2}\alpha=1$$ 
    Or
    $$(\sec\alpha+\tan\alpha)(\sec\alpha-\tan\alpha)=1$$

    So we get $$\sec\alpha - \tan\alpha = \dfrac{1}{a}$$ ..... $$(ii)$$

    Adding equations $$(i)$$ and $$(ii)$$, we get

    $$2\sec\alpha = a + \dfrac{1}{a}$$

    $$\Rightarrow \sec\alpha = \dfrac{1}{2}\left(a + \dfrac{1}{a}\right) $$

    Put the value of $$\sec\alpha$$ in the given equation.

    $$\Rightarrow  5x + \dfrac{1}{20x}=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right)$$

    $$\Rightarrow  \dfrac{1}{2}\left(10x + \dfrac{1}{10x}\right)=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right)$$
    Solving for $$a$$ we get $$ a = 10x$$ or $$a = \dfrac{1}{10x}$$

    Hence option (D) is correct
  • Question 6
    1 / -0
     If  $$k=(\sec A+\tan A)(\sec B+\tan B)(\sec C+\tan C)$$( $$\sec A$$$$-\tan A$$) ( $$\sec B$$$$-\tan B$$) ( $$\sec C$$$$-\tan C$$), then $$k$$ is equal to
    Solution
    $$k=(\text{sec}A+\tan A)(\text{sec}B+\tan B)(\text{sec}C+\tan C)(\text{sec}A-\tan A)(\text{sec}B-\tan B)(\text{sec}C-\tan C)$$
    $$k=(\text{sec}A+\tan A)(\text{sec}A-\tan A)(\text{sec}B+\tan B)(\text{sec}B-\tan B)(\text{sec}C+\tan C)(\text{sec}C-\tan C)$$
    $$k=(\text{sec}^2 A-\tan^2 A)(\text{sec}^2 B-\tan^2 B)(\text{sec}^2 C-\tan^2 C)$$
    $$\implies k=1$$
  • Question 7
    1 / -0
    If $$\tan { \theta  } +\sin { \theta  } =m, \tan { \theta - \sin { \theta =n }  } $$, then $$(m^{2}-n^{2})^{2}=$$.
    Solution
    we solve to get
    $$\tan\theta = \dfrac{m+n}{2} $$ and $$  \sin\theta = \dfrac{m-n}{2}$$
    $$\therefore  \cot\theta = \dfrac{2}{m+n}$$  and  $$\mathrm{cosec}\theta = \dfrac{2}{m-n}$$
    now we use $$\mathrm{cosec}^{2}\theta - \cot^{2}\theta = 1$$  to eliminate $$\theta$$
    $$\dfrac{4}{(m-n)^2}-\dfrac{4}{(m+n)^2}=1$$
    $$4[(m+n)^2-(m-n)^2]=(m^2-n^2)^2$$
    $$4(4mn)=(m^2-n^2)^2$$
  • Question 8
    1 / -0
    If $$\cos x + \sec x = - 2$$ for a positive odd integer $$n$$ then $$\cos^nx + \sec^nx$$ is
    Solution
    If $$\cos x + \sec x = - 2$$
    $$\cos  x + \displaystyle\frac{1}{\cos  x} =-2 $$
    $$\cos ^2x +1 =-2 \cos x$$
    $$\cos ^2x +1 +2 \cos x =0$$
    This is of the form $$a^2+b^2+2ab=(a+b)^2$$
    $$\Rightarrow (\cos x +1)^2 = 0$$
    $$\Rightarrow (\cos x +1) = 0$$
    $$\Rightarrow \cos x =-1 $$
    $$\implies \sec x=-1$$
    If $$n$$ is odd,
    $$ \cos ^nx + \sec ^nx =-1+(-1)= - 2$$ 
    If $$n$$ is even,
    $$\cos ^nx + \sec ^nx = 1+1=2$$ 
  • Question 9
    1 / -0
    In the given figure, $$ \triangle  ABC$$ is right angled at B and $$\cot A = \dfrac{3}{4}$$ . If $$AC =10$$cm, then the length of $$AB$$ is:

    Solution


    $$\cot { A } =\dfrac { 3 }{ 4 } =\dfrac { AB }{ BC } $$
    $$\Rightarrow \dfrac { AB }{ BC } =\dfrac { 3 }{ 4 } $$
    $$\Rightarrow AB:BC=3:4$$
    $$\Rightarrow$$ Let $$ AB=3x\;\&\; BC=4x$$
    In right angle $$\triangle ABC,$$
    $$\Rightarrow { AC }^{ 2 }={ AB }^{ 2 }+{ BC }^{ 2 }$$
    $$\Rightarrow { \left( 10 \right)  }^{ 2 }={ \left( 3x \right)  }^{ 2 }+{ \left( 4x \right)  }^{ 2 }$$
    $$\Rightarrow 100= \left( 9x^2 \right) + \left( 16x^2 \right)$$
    $$\Rightarrow 25{  x   }^{ 2 }=100$$
    $${ \Rightarrow x }^{ 2 }=4$$
    $$\Rightarrow x=2$$
    $$\Rightarrow AB=3x=6cm$$
    Hence, the answer is $$6cm$$

  • Question 10
    1 / -0
     If $$\cos x$$ $$+\cos^{2}{x}=1 $$ then $$ \sin^{12}{x}+3\sin^{10}{x}+$$$$3 \sin^{8}{x}+\sin^{6}{x}+\sin^{4}{x}+2\sin^{2}{x}-2$$ is equal to
    Solution

    $$\cos x + \cos ^{2}x = 1$$


    $$\cos x= 1 - \cos ^{2}x$$


    $$\cos x= \sin ^{2}x$$


    now in the given equation we substitute  $$\sin ^{2}x = \cos x$$  everywhere this gives


    $$= \cos ^{6}x + 3\cos ^{5}x + 3\cos ^{4}x + \cos ^{3}x + 2\cos ^{2}x + \cos x -2$$

    $$ = \cos ^{3}x(\cos x+ 1)^{3} +  2\cos ^{2}x + \cos x -2$$

    $$ = (\cos ^{2}x+ \cos x)^{3} + \cos x -2(1 - \cos ^{2}x)$$

    $$ =(1)^{3} + \cos x -2\cos x$$

    $$ =1-\cos x$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now