Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    The value of the expression $$\text{cosec }(75^0+\theta) - \sec (15^0 - \theta) - \tan (55^0 + \theta) + \cot (35^0 - \theta)$$, is

  • Question 2
    1 / -0

    If $$x=a\cos^{3}\theta\sin^{2}\theta,  y=a\sin^{3}\theta\cos^{2}\theta$$ and $$\displaystyle \frac{(x^{2}+y^{2})^{p}}{(xy)^{q}}, (p,q\in N)$$ is independent of $$\theta$$ then:

  • Question 3
    1 / -0

    $$\sin \left ( 45^{0}+\theta  \right )-\cos\left ( 45^{0}-\theta  \right )$$ is equal to

  • Question 4
    1 / -0

    If $$\mathrm{x}= \mathrm{a}\cos^2 \theta \sin\theta$$ and $$\mathrm{y}=\mathrm{a}\sin^{2}\theta\cos\theta$$, then $$\displaystyle \frac{(\mathrm{x}^{2}+\mathrm{y}^{2})^{3}}{\mathrm{x}^{2}\mathrm{y}^{2}}=$$

  • Question 5
    1 / -0

    $$\tan^2\alpha=1-p^2$$ then, $$\sec\alpha + \tan^3\alpha \,\text{cosec}\,\alpha=$$

  • Question 6
    1 / -0

    The value of $$sin^{2}30^{\circ}$$ - $$cos^{2}30^{\circ}$$ is:

  • Question 7
    1 / -0

    If sin $$A=\dfrac{1}{2}$$ and cos $$B=\dfrac{1}{2}$$, then the value of $$(A+B)$$ is equal to :

  • Question 8
    1 / -0

    If cot $$\theta =\dfrac{7}{8}$$, then the value of $$tan^{2}\theta$$ equals to :

  • Question 9
    1 / -0

    The value of (sin $$45^{\circ}+cos 45^{\circ}$$) is :

  • Question 10
    1 / -0

    In the figure given below, $$\Delta ABC$$ is right angled at B and tan$$A=\dfrac{4}{3}.$$ If $$AC=15$$ cm, then the length of BC is :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now