Self Studies

Introduction to Trigonometry Test - 30

Result Self Studies

Introduction to Trigonometry Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ 3\cos\theta =2\sin\theta $$, then the value of $$ \dfrac{4\sin\theta -3\cos\theta }{2\sin\theta +6\cos\theta }$$ is:
    Solution
    Given that:
    $$3\cos { \theta  } =2\sin { \theta  } $$
    $$\dfrac { \cos { \theta  }  }{ \sin { \theta  }  } =\dfrac { 2 }{ 3 } $$
    $$\cot { \theta  } =\dfrac { 2 }{ 3 } $$
    Now,  $$\dfrac { 4\sin { \theta  } -3\cos { \theta  }  }{ 2\sin { \theta  } +6\cos { \theta  }  } =\dfrac { \sin { \theta  } \left[ 4-3\dfrac { \cos { \theta  }  }{ \sin { \theta  }  }  \right]  }{ \sin { \theta  } \left[ 2+6\dfrac { \cos { \theta  }  }{ \sin { \theta  }  }  \right]  } $$
    Divided and multiplied the numerator and denominator by $$\sin \theta$$.
                                                $$=\dfrac { 4-3\cot { \theta  }  }{ 2+6\cot { \theta  }  } $$
                                                $$=\dfrac { 4-\left( 3\times \dfrac { 2 }{ 3 }  \right)  }{ 2+\left( 6\times \dfrac { 2 }{ 3 }  \right)  } $$
                                                $$=\dfrac { 4-2 }{ 2+4 } $$
                                                $$=\dfrac { 2 }{ 6 } $$
                                                $$=\dfrac { 1 }{ 3 }.$$
    Hence, the answer is $$=\dfrac { 1 }{ 3 } .$$
  • Question 2
    1 / -0
    If $$\tan A =\cfrac{5}{12}$$, find the value of $$(\sin A+ \cos A) \times \sec A$$:
    Solution
    $$\tan { A } =\dfrac { 5 }{ 12 } $$

    $$ \left( \sin { A } +\cos { A }  \right) \times \sec { A }$$
    $$ =\sin { A } .\sec { A } +\cos { A } .\sec { A } $$
    $$=\tan { A } +1$$
    $$=\cfrac { 5 }{ 12 } +1$$
    $$=\cfrac { 17 }{ 12 } $$
  • Question 3
    1 / -0
    The value of tan$$1^{\circ}.tan2^{\circ}.tan3^{\circ}.......... tan89^{\circ}$$ is :
    Solution
    $$\tan \theta = \cot(90^{\circ}-\theta)$$
    $$\therefore \tan1^{\circ}= \cot89^{\circ}$$
    $$ \cot89^{\circ}=\dfrac{1}{\tan89^{\circ} }$$
    Similarly all the term will cancel out each other, except $$\tan45^{\circ}$$, whose value is equal to 1.
  • Question 4
    1 / -0
    If sin$$\Theta$$  = cos$$\Theta$$, then the value of $$\Theta$$ is :
    Solution
    For $$\theta =45°,\sin { \theta  } \& \cos { \theta  } $$
    $$\Rightarrow \sin { \theta  } =\cos { \theta  }$$
    $$\Rightarrow \tan { \theta  } =1$$
    $$\Rightarrow \tan { \theta  } =tan 45^0$$
    $$\Rightarrow { \theta  } =45^0$$

  • Question 5
    1 / -0
    Simplify:$$\displaystyle \dfrac {\cos 60^0+\sin 60^0}{\cos 60^0-\sin 60^0}$$
    Solution
    $$\displaystyle \dfrac {\cos 60^0+\sin 60^0}{\cos 60^0-\sin 60^0}=\dfrac {\dfrac {1}{2}+\dfrac {\sqrt 3}{2}}{\dfrac {1}{2}-\dfrac {\sqrt 3}{2}}$$
    $$=\dfrac {1+\sqrt 3}{1-\sqrt 3}\times \dfrac {1+\sqrt 3}{1+\sqrt 3}$$
    $$=\dfrac {4+2\sqrt 3}{1-3}=-(2+\sqrt 3)$$
  • Question 6
    1 / -0
    The value of $$\cos 1^o.\cos 2^o.\cos 3^o.....\cos 179^o$$ is equal to 
    Solution
    $$A = \cos1^0\cdot\cos2^0\cdot\cos3^0\cdots\cos{90}^0\cdots\cos{179}^0$$
    $$\because \cos{90}^0 = 0$$
    $$\therefore A = 0$$

    Hence, option B.
  • Question 7
    1 / -0
    The value of 
     $$32  { \cot }^{ 2 }{ 45 }^{ \circ  }-8  { \sec }^{ 2 }{ 60 }^{ \circ  }+8  { \cos }^{ 3 }{ 30 }^{ \circ  }\\$$

    Solution
    $$32  { \cot }^{ 2 }{ 45 }^{ \circ  }-8  { \sec }^{ 2 }{ 60 }^{ \circ  }+8  { \cos }^{ 3 }{ 30 }^{ \circ  }\\ =32\times 1-8\times { 2 }^{ 2 }+8\times \dfrac { 3\sqrt { 3 }  }{ 8 } \\ =32-32+3\sqrt { 3 } \\ =3\sqrt { 3 } $$
  • Question 8
    1 / -0
    $$\tan 9^o\times \tan 27^o\times \tan 63^o\times \tan 81^o=$$

    Solution
    $$\tan { { 9 }^{ \circ  }.\tan { { 27 }^{ \circ  }.\tan { { 63 }^{ \circ  }.\tan { { 81 }^{ \circ  } }  }  }  } \\ =\tan { \left( { 90 }^{ \circ  }-{ 81 }^{ \circ  } \right) .\tan { \left( { 90 }^{ \circ  }-{ 63 }^{ \circ  } \right) .\tan { { 63 }^{ \circ  }.\tan { { 81 }^{ \circ  } }  }  }  } \\ =\cot { { 81 }^{ \circ  }.\cot { { 63 }^{ \circ  }. } \tan { { 63 }^{ \circ  }.\tan { { 81 }^{ \circ  } }  }  } \\ =1$$
  • Question 9
    1 / -0
    Which one of the following is correct ?

    Solution
    Only statement $$(C)$$ is correct.
    $$\Rightarrow \tan { \alpha  } \cot { \alpha  } =1$$
    $$\Rightarrow L.H.S=\tan { \alpha  } \cot { \alpha  } $$
                        $$=\dfrac { 1 }{ \cot { \alpha  }  } \cot { \alpha  } $$
                        $$=1=R.H.S.$$
    Hence, the answer is $$ \tan { \alpha  } \cot { \alpha  }=1.$$
  • Question 10
    1 / -0
    If $$\tan30^0=x, \tan 45^0=y, \tan 60^0=z,$$ then which of the following is/are correct?
    Solution
    $$\displaystyle x=\tan { { 30 }^{ \circ  }=\frac { 1 }{ \sqrt { 3 }  }, \\ y=\tan { { 45 }^{ \circ  }=1,\\ z=\tan { { 60 }^{ \circ  }=\sqrt { 3 }  }  }  }$$

    $$xz=\dfrac { \sqrt { 3 }  }{ \sqrt { 3 }  } =1=y$$

    $$x + y = \dfrac1{\sqrt3} + 1  = \dfrac{1+\sqrt3}{\sqrt3} ≠ \sqrt3 = z$$

    $$y+z = 1+\sqrt3 ≠\dfrac1{\sqrt3} = x$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now