Self Studies

Introduction to Trigonometry Test - 34

Result Self Studies

Introduction to Trigonometry Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x= \sec\phi - \tan\phi $$ and  $$y= cosec \phi  $$ then:
    Solution
    $$x=sec\phi-tan\phi$$ and $$sec^2\phi-tan^2\phi=1$$

    $$\dfrac{1}x=\dfrac{1}{(sec\phi-tan\phi)}$$ now multiply and divide by $$sec\phi+tan\phi$$

    $$\dfrac{1}x=\dfrac{sec\phi+tan\phi)}{(sec^2\phi-tan^2\phi)}=sec\phi+tan\phi$$

    $$x+\dfrac{1}x=2sec\phi$$ and $$x-\dfrac{1}x=-2tan\phi$$

    $$y=cosec\phi=sec\phi/tan\phi=\dfrac{(x+\dfrac{1}x)}{-(x-\dfrac{1}x)}=\dfrac{1+x^2}{1-x^2}$$

    $$y-yx^2=1+x^2=>x^2+x^2y-y+1=0$$

  • Question 2
    1 / -0
    The value of $$\tan 5^{\circ}\tan 10^{\circ}\tan 15^{\circ}\cdots \tan 85^{\circ}$$ is
    Solution

    Using,

     $$\tan x=\cot \left( 90^{\circ}-x \right) $$ and $$\tan x.\cot x=1$$

    We get ,

    $$\tan 5.\tan 10.\tan 15...\tan 80.\tan 85\\ =\tan 5.\tan 10.\tan 15...\tan 45. \cot(90-35)...\cot \left( 90-10 \right) .\cot \left( 90-5 \right) \\ =\tan 5.\cot 5.\tan 10.\cot 10...\tan 45\\ =1$$

  • Question 3
    1 / -0
    If $$\displaystyle\tan \alpha +\cot \alpha =p$$, then find $$\displaystyle\tan^{2} \alpha +\cot^{2} \alpha $$     
    Solution
    $$\tan { \alpha  } +\cot { \alpha  } =p\\ \Rightarrow { \left( \tan { \alpha +\cot { \alpha  }  }  \right)  }^{ 2 }={ p }^{ 2 }\\ \Rightarrow \tan ^{ 2 }{ \alpha  } +\cot ^{ 2 }{ \alpha  } +{ 2=p }^{ 2 }\\ \Rightarrow \tan ^{ 2 }{ \alpha  } +\cot ^{ 2 }{ \alpha  } ={ p }^{ 2 }-2$$
  • Question 4
    1 / -0
    $$\cos ^{2} 60^{\circ}+\sin ^{2} 30^{\circ} = \displaystyle \frac{1}{a}$$
    Then $$a=$$
    Solution
    $$\cos^2 60^{\circ} + \sin^2 30^{\circ}$$
    $$=\left(\dfrac{1}{2}\right)^2 + \left(\dfrac{1}{2}\right)^2$$
    $$=\cfrac{1}{4} + \cfrac{1}{4}$$
    $$=\cfrac{2}{4}$$
    $$=\cfrac{1}{2}$$
    $$\therefore \dfrac1a = \dfrac12$$
    $$\Rightarrow a = 2$$
  • Question 5
    1 / -0
    If $$\displaystyle \tan \theta =a-\frac{1}{4a}$$, then $$\sec \theta -\tan \theta $$ equals
    Solution
    $$\tan { \theta  } =a-\dfrac { 1 }{ 4a } $$

    $$Let \,k=\sec { \theta  } -\tan { \theta  }$$

    $$\Rightarrow k=\sqrt { 1+\tan ^{ 2 }{ \theta  }  } -\tan { \theta  } $$      {$$\because \sec^2\theta=1+\tan^2\theta$$}

     $$\Rightarrow k=\sqrt { 1+{ \left( a-\dfrac { 1 }{ 4a }  \right)  }^{ 2 } } -a+\dfrac { 1 }{ 4a }$$

    $$\Rightarrow k=\sqrt { { \left( a+\dfrac { 1 }{ 4a }  \right)  }^{ 2 } } -a+\dfrac { 1 }{ 4a } =\pm \left( a+\dfrac { 1 }{ 4a }  \right) -a+\dfrac { 1 }{ 4a }$$

    $$\therefore \quad k=-2a,\dfrac { 1 }{ 2a } $$

    Ans: D
  • Question 6
    1 / -0
    The expression $$\displaystyle f\left ( \theta \right )= \frac{1}{\tan \theta+\sec \theta+\cot \theta+\text{cosec} \theta}$$ is equivalent to
    Solution
    $$\displaystyle f(\theta ) = \frac{1}{\tan \theta  + \sec \theta  + \cot \theta  + \text{cosec } \theta }$$
            
            $$\displaystyle= \frac{1}{\frac{\sin \theta }{\cos \theta}  +\frac{ 1}{\cos \theta}  + \frac{\cos \theta }{\sin \theta}  + \frac{1}{\sin \theta} }$$
            
            $$\displaystyle= \frac{\sin \theta . \cos \theta }{\sin^2 \theta  + \cos \theta  + \cos ^2\theta  + \sin \theta } = \frac{\sin \theta . \cos \theta }{\cos \theta  + \sin \theta  + 1} $$
            
            $$\displaystyle= \frac{\sin \theta . \cos \theta }{\cos \theta  + \sin \theta  + 1}.\frac{\cos \theta  + \sin \theta  - 1}{\cos \theta  + \sin \theta  - 1} =  \frac{\sin \theta . \cos \theta }{(\cos \theta  + \sin \theta )^2 - 1}.(\cos \theta  + \sin \theta  - 1) $$ 
            
            $$\displaystyle=  \frac{\cos \theta  + \sin \theta  - 1}{2} =  \frac{\text{cosec } \theta  + \sec \theta  - \text{cosec } \theta .\sec \theta }{2\text{cosec } \theta .\sec \theta } $$ .....(.dividing by $$\cos \theta\sin\theta$$)
  • Question 7
    1 / -0
    Choose the correct option for the following statement.
    $$\sin 60^{0} \: \cos 30^{0}+\cos 60^{0} \: \sin 30^{0}= 1$$
    Solution

    To Prove:$$\sin 60^{0} \: \cos 30^{0}+\cos 60^{0} \: \sin 30^{0}= 1$$

    L.H.S.: $$\sin 60^{0} \: \cos 30^{0}+\cos 60^{0} \: \sin 30^{0}$$

    = $$\dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{3}}{2} + \dfrac{1}{2} \times \dfrac{1}{2}$$

    = $$\dfrac{3}{4} + \dfrac{1}{4}$$

    = $$\dfrac{4}{4}$$

    = $$1$$

    thus, $$L.H.S. = R.H.S.$$

    The given statement is true.

  • Question 8
    1 / -0
    $$ABC$$ is an isosceles right-angled triangle. Assuming $$AB= BC= x$$, find the value of each of the following trigonometric ratios:
    $$\sin 45^{0}$$ is $$\displaystyle \dfrac{1}{\sqrt{m}}$$, the value of $$m$$ is 

    Solution
    Given: $$\triangle ABC$$, $$AB = BC = x$$, $$\angle ABC = 90^{\circ}$$

    By Pythagoras Theorem,
    $$AC^2 = AB^2 + BC^2$$
    $$AC^2 = x^2 + x^2$$
    $$AC^2 = 2x^2$$
    $$AC = \sqrt{2} x$$

    Since, $$AB = BC$$, then by Isosceles triangle property,
    $$\angle ACB = \angle CAB = 45^{\circ}$$

    Now, $$Sin  45^{\circ} = Sin  C = \dfrac{P}{H}$$
                                         
                                            $$ = \dfrac{AB}{AC}$$
                                           
                                            $$ = \dfrac{x}{x\sqrt{2}} = \dfrac{1}{\sqrt{2}}$$
    so, the value of $$m$$ is $$=2$$
  • Question 9
    1 / -0
    Choose the correct option for the following.
    The value of $$\displaystyle \frac{\cos 3A-2\cos 4A}{\sin 3A+2\sin 4A}$$ is $$\displaystyle \frac{1-\sqrt{2}}{1+\sqrt{6}}$$, when $$A= 15^{0}$$.
    Solution
    Given, $$A = 15^{\circ}$$

    Thus, $$\displaystyle \dfrac{\cos 3A-2\cos 4A}{\sin 3A+2\sin 4A}$$

    Put $$A = 15^{\circ}$$
    = $$\displaystyle \dfrac{\cos 45^0 -2\cos 60^0}{\sin 45^0 + 2\sin 60^0}$$

    = $$\displaystyle \dfrac{\dfrac{1}{\sqrt{2}} -2 (\dfrac{1}{2})}{\dfrac{1}{\sqrt{2}} + 2(\dfrac{\sqrt{3}}{2})}$$ 

    = $$\displaystyle \dfrac{\dfrac{1}{\sqrt{2}} - 1}{\dfrac{1}{\sqrt{2}} + \sqrt{3}}$$ 

    = $$\displaystyle \dfrac{\dfrac{1 - \sqrt{2}}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}} + \sqrt{3}}$$ 

    = $$\displaystyle \dfrac{1 - \sqrt{2}}{1 + \sqrt{6}}$$ 
  • Question 10
    1 / -0
    If $$\tan \angle ADC= 1$$ and $$\sin \angle ABC=4:5$$, then measure of $$CD$$ is: 

    Solution

    In $$\triangle ABC$$, $$BC = 15$$, $$\sin B = \dfrac {4}{5}$$

    Now, $$\sin B = \dfrac {P}{H}$$
    $$\dfrac {4}{5} = \dfrac {AC}{AB}$$
    Then, let $$AC = 4x$$ and $$AB = 5x$$

    Now, $$AB^2 = AC^2 + BC^2$$
    $$(5x)^2 = (4x)^2 + 15^2$$
    $$25x^2 = 16x^2 + 225$$
    $$9x^2 = 225$$
    $$x = 5$$

    Hence, $$AC= 20$$ and $$AB = 25$$

    $$\tan \angle ADC = 1$$
    $$\dfrac {AC}{CD} = 1$$
    $$AC = CD = 20$$

    Now, using Pythagoras theorem,
    $$AD^2 = AC^2 + CD^2$$
    $$AD^2 = 20^2 + 20^2$$
    $$AD = 20 \sqrt{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now