$$cot\alpha +tan\alpha =m\Rightarrow \cfrac { 1 }{ tan\alpha } +tan\alpha =m$$
$$ \Rightarrow 1+{ tan }^{ 2 }\alpha =mtan\alpha \Rightarrow { sec }^{ 2 }\alpha =mtan\alpha \quad \quad \quad ...(1)$$
$$\cfrac { 1 }{ cos\alpha } -cos\alpha =n\Rightarrow sec\alpha -\cfrac { 1 }{ sec\alpha } =n$$
$$ \Rightarrow { sec }^{ 2 }\alpha -1=nsec\alpha \Rightarrow { tan }^{ 2 }\alpha =nsec\alpha $$
$$ \Rightarrow { tan }^{ 4 }\alpha ={ n }^{ 2 }{ sec }^{ 2 }\alpha $$
Substituting value from (1)
$${ tan }^{ 4 }\alpha ={ n }^{ 2 }mtan\alpha \Rightarrow { tan }^{ 3 }\alpha ={ n }^{ 2 }m\Rightarrow tan\alpha ={ \left( { n }^{ 2 }m \right) }^{ \cfrac { 1 }{ 3 } }\quad \quad ...(2)$$
Substituting (2) in (1), we get
$${ sec }^{ 2 }\alpha =mtan\alpha =m{ \left( { n }^{ 2 }m \right) }^{ \cfrac { 1 }{ 3 } }\quad \quad \quad ...(3)$$
From (2) and (3)
$${ sec }^{ 2 }\alpha -{ tan }^{ 2 }\alpha =1\Rightarrow m{ \left( { n }^{ 2 }m \right) }^{ \cfrac { 1 }{ 3 } }-{ \left( { n }^{ 2 }m \right) }^{ \cfrac { 2 }{ 3 } }=1$$
$$ \Rightarrow m{ \left( m{ n }^{ 2 } \right) }^{ \cfrac { 1 }{ 3 } }-n{ \left( n{ m }^{ 2 } \right) }^{ \cfrac { 1 }{ 3 } }=1$$