Self Studies

Introduction to Trigonometry Test - 36

Result Self Studies

Introduction to Trigonometry Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$0 < A < \pi /2$$ the value of the expression $$\dfrac {tan A}{1-cot A}+\dfrac {cot A}{1-tan A}-sec A cosec A$$ is equal to
    Solution
    $$\displaystyle \frac {\tan A}{1-\cot A}+\frac {\cot A}{1-\tan A}-\sec A cosec A$$

    $$\displaystyle =\frac {\sin^2A}{\cos A(\sin A-\cos A)}+\frac {\cos^2A}{\sin A(\cos A-\sin A)}-\sec A cosec A$$

    $$\displaystyle =\frac {\sin^3A-\cos^3A}{\sin A\cos A(\sin A-\cos A)}-\sec A cosec A$$

    $$=\displaystyle \frac {\sin^2 A+\cos^2 A+\sin A \cos A}{\sin A \cos A}-\sec A cosec A$$     $$[a^3 -b^3=(a-b)(a^2+ab+b^2)]$$

    $$=\sec A cosec A+1-\sec A cosec A$$
    $$=1$$.
  • Question 2
    1 / -0
    For all values of $$\alpha$$ the given expression is equal to:
     $$(sin\alpha+cosec \alpha)^2+(cos\alpha+sec\alpha)^2-(tan^2\alpha+cot^2\alpha)$$ 
    Solution
    $$(\sin\alpha+cosec \alpha)^2+(\cos\alpha+\sec\alpha)^2-(\tan^2\alpha+\cot^2\alpha)$$

    $$=\sin^2\alpha+cosec^2\alpha+2+\cos^2\alpha+\sec^2\alpha+2-\tan^2\alpha-\cot^2\alpha$$

    $$=4+\sin^2\alpha+\cos^2\alpha+\sec^2\alpha-tan^2\alpha+cosec^2\alpha-\cot^2\alpha=7$$
  • Question 3
    1 / -0
    If $$\displaystyle \tan A=1 $$ and $$\displaystyle \tan B=\sqrt{3}$$ evaluate:$$\displaystyle \cos A\cos B-\sin A\sin B$$
    Solution
    $$\tan A = 1$$ and $$\tan B = \sqrt{3}$$

    $$\tan A = \tan 45$$ and $$\tan B  = \tan 60$$

    $$A = 45^{\circ}$$ and $$B = 60^{\circ}$$

    Now, 
    = $$\cos A \cos B - \sin A \sin B$$

    = $$\cos 45^0 \cos 60^0 - \sin 45^0 \sin 60^0$$

    = $$(\dfrac{1}{\sqrt{2}}) (\dfrac{1}{2}) - (\dfrac{1}{\sqrt{2}}) (\dfrac{\sqrt{3}}{2})$$

    = $$\dfrac{1}{2\sqrt{2}} - \dfrac{\sqrt{3}}{2\sqrt{2}}$$

    = $$\dfrac{1}{2\sqrt{2}} - \dfrac{\sqrt{3}}{2\sqrt{2}}$$

    = $$\dfrac{1- \sqrt{3}}{2 \sqrt{2}}$$
  • Question 4
    1 / -0
    If $$cot\alpha+tan\alpha=m$$ and $$\dfrac {1}{cos\alpha}-cos\alpha=n$$, then
    Solution
    $$cot\alpha +tan\alpha =m\Rightarrow \cfrac { 1 }{ tan\alpha  } +tan\alpha =m$$

    $$ \Rightarrow 1+{ tan }^{ 2 }\alpha =mtan\alpha \Rightarrow { sec }^{ 2 }\alpha =mtan\alpha \quad \quad \quad ...(1)$$

    $$\cfrac { 1 }{ cos\alpha  } -cos\alpha =n\Rightarrow sec\alpha -\cfrac { 1 }{ sec\alpha  } =n$$

    $$ \Rightarrow { sec }^{ 2 }\alpha -1=nsec\alpha \Rightarrow { tan }^{ 2 }\alpha =nsec\alpha $$

    $$ \Rightarrow { tan }^{ 4 }\alpha ={ n }^{ 2 }{ sec }^{ 2 }\alpha $$

    Substituting value from (1)

    $${ tan }^{ 4 }\alpha ={ n }^{ 2 }mtan\alpha \Rightarrow { tan }^{ 3 }\alpha ={ n }^{ 2 }m\Rightarrow tan\alpha ={ \left( { n }^{ 2 }m \right)  }^{ \cfrac { 1 }{ 3 }  }\quad \quad ...(2)$$

    Substituting (2) in (1), we get

    $${ sec }^{ 2 }\alpha =mtan\alpha =m{ \left( { n }^{ 2 }m \right)  }^{ \cfrac { 1 }{ 3 }  }\quad \quad \quad ...(3)$$

    From (2) and (3)

    $${ sec }^{ 2 }\alpha -{ tan }^{ 2 }\alpha =1\Rightarrow m{ \left( { n }^{ 2 }m \right)  }^{ \cfrac { 1 }{ 3 }  }-{ \left( { n }^{ 2 }m \right)  }^{ \cfrac { 2 }{ 3 }  }=1$$

    $$ \Rightarrow m{ \left( m{ n }^{ 2 } \right)  }^{ \cfrac { 1 }{ 3 }  }-n{ \left( n{ m }^{ 2 } \right)  }^{ \cfrac { 1 }{ 3 }  }=1$$ 
  • Question 5
    1 / -0
    If $$\dfrac {2 \sin\alpha}{1+\cos\alpha+\sin\alpha}=y$$, then $$\dfrac {1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$$ is equal to
    Solution
    $$\cfrac { 1-\cos\alpha +\sin\alpha  }{ 1+\sin\alpha  } =\cfrac { 1-\cos\alpha +\sin\alpha  }{ 1+\sin\alpha  } .\cfrac { 1+\cos\alpha +\sin\alpha  }{ 1+\cos\alpha +\sin\alpha  } \\ =\cfrac { { \left( 1+\sin\alpha  \right)  }^{ 2 }-{ \cos }^{ 2 }\alpha  }{ \left( 1+\sin\alpha  \right) \left( 1+\cos\alpha +\sin\alpha  \right)  } =\cfrac { 1+{ \sin }^{ 2 }\alpha +2\sin\alpha -\left( 1-{ \sin }^{ 2 }\alpha  \right)  }{ \left( 1+\sin\alpha  \right) \left( 1+\cos\alpha +\sin\alpha  \right)  } \\ =\cfrac { 2{ \sin }^{ 2 }\alpha +2\sin\alpha  }{ \left( 1+\sin\alpha  \right) \left( 1+\cos\alpha +\sin\alpha  \right)  } =\cfrac { 2\sin\alpha \left( \sin\alpha +1 \right)  }{ \left( 1+\sin\alpha  \right) \left( 1+\cos\alpha +\sin\alpha  \right)  } \\ =\cfrac { 2\sin\alpha  }{ 1+\cos\alpha +\sin\alpha  } =y$$
  • Question 6
    1 / -0
    If $$\sin x+\sin^2 x=1$$, then the value of $$\cos^{12}x+3 \cos^{10}x+3 \cos^8x+\cos^6x-1$$ is equal to
    Solution
    Using $$\sin x+{ \sin  }^{ 2 }x=1\Rightarrow \sin x=1-{ \sin  }^{ 2 }x={ \cos }^{ 2 }x$$
    $${ \cos }^{ 12 }x+3{ \cos }^{ 10 }x+3{ \cos }^{ 8 }x+{ \cos }^{ 6 }x-1\\ ={ \sin  }^{ 6 }x+3{ \sin  }^{ 5 }x+3{ \sin  }^{ 4 }x+{ \sin  }^{ 3 }x-1\\ ={ \sin  }^{ 3 }x\left( { \sin  }^{ 3 }x+3{ \sin  }^{ 2 }x+3\sin x+1 \right) -1\\ ={ \sin  }^{ 3 }x{ \left( \sin x+1 \right)  }^{ 3 }-1={ \left( { \sin  }^{ 2 }x+\sin x \right)  }^{ 3 }-1\\ ={ 1 }^{ 3 }-1=1-1=0$$
  • Question 7
    1 / -0
    If $$\sec C$$ is $$\displaystyle \frac{m}{2\sqrt{2}}$$, then $$m$$ is: 

    Solution
    Given, $$\triangle ABC$$, A perpendicular from B on AC, let it cut AC at D, such that$$\angle BDA = \angle BDC = 90^{\circ}$$
    $$AD = 3$$
    $$BD = 4$$
    $$BC = 12$$

    In $$\triangle ABD$$,
    $$AB^2 = BD^2 + AD^2$$
    $$AB^2 = 3^2 + 4^2$$
    $$AB = 5$$

    In $$\triangle BCD$$
    $$BC^2 = CD^2 + BD^2$$
    $$12^2 = CD^2 + 4^2$$
    $$CD^2 = 128$$
    $$CD = 8 \sqrt{2}$$

    Now, $$\sec C = \frac{H}{P} = \frac{12}{8 \sqrt{2}} = \frac{3}{2\sqrt{2}}$$
  • Question 8
    1 / -0
    If $$\cos 1^o \cos 2^o \cos 3^o ... \cos {179}^o=x+1$$, then $$x$$ is equal to
    Solution
    $$\cos1^{0}.\cos2^{0}...\cos90^{0}...\cos(179^{0})$$
    $$=0$$ since $$\cos90^{0}=0$$
    Hence
    $$x+1=0$$
    $$x=-1$$
  • Question 9
    1 / -0
    In the following figure, cosec A is $$\displaystyle \frac{5}{m}$$, m is 

    Solution
    Given, $$\triangle ABC$$, A perpendicular from B on AC, let it cut AC at D, such that$$\angle BDA = \angle BDC = 90^{\circ}$$
    $$AD = 3$$
    $$BD = 4$$
    $$BC = 12$$

    In $$\triangle ABD$$,
    $$AB^2 = BD^2 + AD^2$$
    $$AB^2 = 3^2 + 4^2$$
    $$AB = 5$$

    In $$\triangle BCD$$
    $$BC^2 = CD^2 + BD^2$$
    $$12^2 = CD^2 + 4^2$$
    $$CD^2 = 128$$
    $$CD = 8 \sqrt{2}$$

    Now, $$cosec  A = \frac{H}{P} = \frac{AB}{BD} = \frac{5}{4} $$
    $$\therefore m=4$$
  • Question 10
    1 / -0
    Find the value of : $$\cot^{2} C\, -\, \displaystyle \frac{1}{\sin^{2} C}$$.

    Solution
    Given, $$\triangle ABC$$, A perpendicular from B on AC, let it cut AC at D, such that$$\angle BDA = \angle BDC = 90^{\circ}$$
    $$AD = 3$$
    $$BD = 4$$
    $$BC = 12$$

    In $$\triangle ABD$$,
    $$AB^2 = BD^2 + AD^2$$
    $$AB^2 = 3^2 + 4^2$$
    $$AB = 5$$

    In $$\triangle BCD$$
    $$BC^2 = CD^2 + BD^2$$
    $$12^2 = CD^2 + 4^2$$
    $$CD^2 = 128$$
    $$CD = 8 \sqrt{2}$$

    Now, $$cot^2 C - \frac{1}{\sin^2 C} = cot^2 C - csc^2 C = (\frac{B}{P})^2 - (\frac{H}{P})^2$$
    = $$(\frac{8\sqrt{2}}{4})^2 - (\frac{12}{4})^2$$
    = $$ 8 - 9$$
    = $$-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now