Self Studies

Introduction to Trigonometry Test - 37

Result Self Studies

Introduction to Trigonometry Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\sin C$$ is $$\displaystyle \frac{1}{m}$$, then $$m$$ is: 

    Solution
    Given, $$\triangle ABC$$, A perpendicular from B on AC.
    Let it cut AC at D, such that$$\angle BDA = \angle BDC = 90^{\circ}$$
    $$AD = 3$$
    $$BD = 4$$
    $$BC = 12$$

    In $$\triangle ABD$$,
    $$AB^2 = BD^2 + AD^2$$
    $$AB^2 = 3^2 + 4^2$$
    $$AB = 5$$

    In $$\triangle BCD$$
    $$BC^2 = CD^2 + BD^2$$
    $$12^2 = CD^2 + 4^2$$
    $$CD^2 = 128$$
    $$CD = 8 \sqrt{2}$$

    Now, $$\sin C = \dfrac{P}{H} = \dfrac{BD}{DC} = \dfrac{4}{12} = \dfrac{1}{3}$$

    So, option D is correct.
  • Question 2
    1 / -0
    If $$\cos A$$ is $$\displaystyle \frac{3}{m}$$, then m is:

    Solution
    Given, $$\triangle ABC$$, A perpendicular from B on AC, let it cut AC at D, such that$$\angle BDA = \angle BDC = 90^{\circ}$$
    $$AD = 3$$
    $$BD = 4$$
    $$BC = 12$$

    In $$\triangle ABD$$,
    $$AB^2 = BD^2 + AD^2$$
    $$AB^2 = 3^2 + 4^2$$
    $$AB = 5$$

    In $$\triangle BCD$$
    $$BC^2 = CD^2 + BD^2$$
    $$12^2 = CD^2 + 4^2$$
    $$CD^2 = 128$$
    $$CD = 8 \sqrt{2}$$

    Now, $$\cos A = \dfrac{B}{H} = \dfrac{AD}{AB} = \dfrac{3}{5}$$
    $$\Longrightarrow$$ $$m=5$$
  • Question 3
    1 / -0
    If $$cos x+sin x=\sqrt 2 cos x$$, then $$tan^2x+2 tan x$$ is equal to
    Solution
    Given $$cos x+sin x=\sqrt 2 cos x$$

    $$(cos x+sin x)^2=2 cos^2 x$$
    $$cos^2x+sin^2x+2sinxcosx=2cos^2x$$
    Divide $$cos^2x$$  both sides
    $$\Rightarrow 1+\tan^2x+2 \tan x=2$$

    $$\Rightarrow \tan^2x+2 \tan x=1$$

  • Question 4
    1 / -0
    Given: $$\cos A\, =\, \displaystyle \cfrac{5}{13}$$. If $$\displaystyle \frac{\sin A\, -\, \cot A}{2\, \tan\, A}$$ is $$\displaystyle \frac{m}{3744}$$, $$m$$ is: 
    Solution
    Given, $$\cos A = \frac{5}{13}$$
    $$\cos A = \frac{B}{H} = \frac{5}{13}$$

    Now, using Pythagoras Theorem,
    $$H^2 = P^2 + B^2$$
    $$13^2 = P^2 + 5^2$$
    $$P = 12$$

    Now, $$\displaystyle \frac{\sin A\, -\, \cot A}{2\tan A}$$

    = $$\displaystyle \frac{\frac{12}{13}\, -\, \frac{5}{12}}{2 (\frac{12}{5})}$$

    = $$\displaystyle \frac{\frac{144 - 65}{156}}{\frac{24}{5}}$$

    = $$\displaystyle \frac{\frac{79}{156}}{\frac{24}{5}}$$

    = $$\displaystyle \frac{395}{3744}$$
  • Question 5
    1 / -0
    If  $$ 5 \cot\, \theta\, =\, 12$$, find the value of : $$\csc\, \theta\, +\, \sec \, \theta$$ is $$\displaystyle {3}\cfrac{41}{m}$$, m is
    Solution
    $$5 \cot \theta = 12$$
    $$\cot \theta = \cfrac{12}{5}$$
    $$\cot \theta = \cfrac{B}{P} = \cfrac{12}{5}$$

    Using Pythagoras Theorem,
    $$H^2 = P^2 + B^2$$
    $$H^2 = 12^2 + 5^2$$
    $$H = 13$$

    Now, $$\csc \theta + \sec \theta$$
    = $$\cfrac{H}{P} + \cfrac{H}{B}$$
    = $$\cfrac{13}{12} + \cfrac{13}{5}$$
    = $$\cfrac{65 + 156}{60}$$
    = $$\cfrac{221}{60}$$
    = $$3 \cfrac{41}{60}$$
  • Question 6
    1 / -0

    Directions For Questions

    In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC$$=$$3 cm and AB$$=$$4 cm. Without using tables, find :

    ...view full instructions

    $$sin\, \angle DBA$$ is $$\displaystyle \frac{4}{m}$$
    value of m is

    Solution
    In $$\triangle ABC$$
    $$AB^2 + BC^2 = AC^2$$ (By Pythagoras theorem)
    $$4^2+ 3^2 = AC^2$$
    $$AC^2 = 25$$
    $$AC =5$$

    In $$\triangle ABC$$
    $$\angle A + \angle B + \angle C = 180$$
    $$\angle A + \angle C = 90$$ (As $$\angle B = 90$$).....(i)

    In $$\triangle ABD$$,
    $$\angle A + \angle BDA + \angle DBA = 180$$
    $$\angle A + \angle DBA = 90$$ (As $$\angle BDA = 90$$).....(i)

    From (i) and (ii)
    $$\angle C = \angle DBA$$
    Similarly, $$\angle DBC = \angle A$$

    Now, $$\sin \angle DBA = \sin \angle C = \frac{P}{H} = \frac{AB}{AC}= \frac{4}{5}$$
  • Question 7
    1 / -0

    Directions For Questions

    In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC$$=$$3 cm and AB$$=$$4 cm. Without using tables, find :

    ...view full instructions

    $$tan\, \angle DBC$$  is $$\displaystyle \frac{m}{4}$$
    value of m is 

    Solution
    In $$\triangle ABC$$
    $$AB^2 + BC^2 = AC^2$$ (By Pythagoras theorem)
    $$4^2+ 3^2 = AC^2$$
    $$AC^2 = 25$$
    $$AC =5$$

    In $$\triangle ABC$$
    $$\angle A + \angle B + \angle C = 180$$
    $$\angle A + \angle C = 90$$ (As $$\angle B = 90$$).....(i)

    In $$\triangle ABD$$,
    $$\angle A + \angle BDA + \angle DBA = 180$$
    $$\angle A + \angle DBA = 90$$ (As $$\angle BDA = 90$$).....(i)

    From (i) and (ii)
    $$\angle C = \angle DBA$$
    Similarly, $$\angle DBC = \angle A$$

    Now, $$\tan \angle DBC = \tan \angle A = \dfrac{P}{B} = \dfrac{BC}{AB}= \dfrac{3}{4}$$
  • Question 8
    1 / -0
    Given : $$sec\, A\, =\, \displaystyle \frac{29}{21}$$, evaluate : $$sin\, A\, -\, \displaystyle \frac{1}{tan\, A}$$ is $$\displaystyle -\frac{m}{580}$$, m is 
    Solution
    $$\sec A = \frac{29}{21}$$
    $$\sec A = \frac{H}{B} = \frac{29}{21}$$

    Using Pythagoras Theorem,
    $$H^2 = P^2 + B^2$$
    $$29^2 = P^2 + 21^2$$
    $$841 = 441 + P^2$$$
    $$P = 20$$

    Now, $$\sin A - \frac{1}{\tan A} = \sin A - \cot A$$
    = $$\frac{P}{H} - \frac{B}{P}$$
    = $$\frac{20}{29} - \frac{21}{20}$$
    = $$\frac{400 - 609}{580}$$
    = $$\frac{- 209}{580}$$
  • Question 9
    1 / -0
    In $$\triangle ABC$$  If $$\sin B$$ is $$\displaystyle \frac{12}{m}$$, then $$m$$ is: 

    Solution
    In $$\triangle ABC$$, $$AD \perp BC$$ $$AB = 13$$, $$BD = 5$$, $$DC =16$$

    Now, In $$\triangle ABD$$,
    $$AB^2 = AD^2 + BD^2$$
    $$13^2 = AD^2 + 5^2$$
    $$AD^2 = 144$$
    $$AD = 12$$ 

    Now, in $$\triangle ADC$$,
    $$AC^2 = AD^2 + CD^2$$
    $$AC^2 = 12^2 + 16^2$$
    $$AC^2 = 144 + 256$$
    $$AC = 20$$ cm

    Now, $$\sin B = \frac{P}{H} = \frac{AD}{AB} = \frac{12}{13}$$
  • Question 10
    1 / -0
    If $$\tan C$$ is $$\displaystyle \frac{3}{m}$$, then $$m$$ is: 

    Solution
    In $$\triangle ABC$$, $$AD \perp BC$$ $$AB = 13$$, $$BD = 5$$, $$DC =16$$

    Now, In $$\triangle ABD$$,
    $$AB^2 = AD^2 + BD^2$$
    $$13^2 = AD^2 + 5^2$$
    $$AD^2 = 144$$
    $$AD = 12$$ 

    Now, in $$\triangle ADC$$,
    $$AC^2 = AD^2 + CD^2$$
    $$AC^2 = 12^2 + 16^2$$
    $$AC^2 = 144 + 256$$
    $$AC = 20$$ cm

    Now, $$\tan C = \frac{P}{B} = \frac{AD}{CD} = \frac{12}{16} = \frac{3}{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now