Self Studies

Introduction to Trigonometry Test - 38

Result Self Studies

Introduction to Trigonometry Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find :

    ...view full instructions

    $$cot\, \angle DBA$$ 

    Solution
    In $$\triangle ABC$$
    $$AB^2 + BC^2 = AC^2$$ (By Pythagoras theorem)
    $$12^2+ 5^2 = AC^2$$
    $$AC^2 = 169$$
    $$AC =13$$

    In $$\triangle ABC$$
    $$\angle A + \angle B + \angle C = 180$$
    $$\angle A + \angle C = 90$$ (As $$\angle B = 90$$).....(i)

    In $$\triangle ABD$$,
    $$\angle A + \angle BDA + \angle DBA = 180$$
    $$\angle A + \angle DBA = 90$$ (As $$\angle BDA = 90$$).....(i)

    From (i) and (ii)
    $$\angle C = \angle DBA$$
    Similarly, $$\angle DBC = \angle A$$

    Now, $$\cot \angle DBA = \cot \angle C = \frac{B}{P} = \frac{BC}{AB}= \frac{5}{12}$$
  • Question 2
    1 / -0
    If  $$ \tan A + \cot A = 5$$; find the value if $$\tan^{2}\, A\, +\, \cot ^{2} A$$.
    Solution
    $$\tan A + \cot A = 5$$
    Squaring both sides,
    $$(\tan A + \cot A)^2 = 25$$
    $$\tan^2 A + \cot^2 A + 2 \tan A \cot A = 25$$
    $$\tan^2 A + \cot^2 A + 2 = 25$$
    $$\tan^2 A + \cot^2 A = 23$$
  • Question 3
    1 / -0

    Directions For Questions

    $$x=co \sec^2\theta, y=\sec^2\theta, z=\displaystyle \cfrac {1}{1-\sin^2\theta \cos^2\theta}$$

    ...view full instructions

    $$\displaystyle \frac {1}{x^2}+\frac {1}{y^2}$$ is equal to
    Solution
    $$\cfrac { 1 }{ x^{ 2 } } +\cfrac { 1 }{ y^{ 2 } } =\cfrac { 1 }{ co \sec^{ 4 }\theta  } +\cfrac { 1 }{ \sec^{ 4 }\theta  } =\sin^{ 4 }\theta +\cos^{ 4 }\theta \\ =1-2\sin^{ 2 }\theta \cos^{ 2 }\theta =1-2\left( 1-\cfrac { 1 }{ z }  \right) =\cfrac { 2-z }{ z } $$
  • Question 4
    1 / -0
    If $$3 \sin\theta+ 5 \cos\theta=5$$, then $$5 \sin\theta-3 \cos\theta$$ is equal to
    Solution
    Given $$3 sin\theta+ 5 cos\theta=5$$
    Squaring both sides, we get
    $$9\sin ^{ 2 }{ \theta  } +25\cos ^{ 2 }{ \theta  } +30\sin { \theta  } \cos { \theta  } =25$$
    $$\Rightarrow 9-9\cos ^{ 2 }{ \theta  } +25-25\sin ^{ 2 }{ \theta  } +30\sin { \theta  } \cos { \theta  } =25$$
    $$\Rightarrow 9\cos ^{ 2 }{ \theta  } +25\sin ^{ 2 }{ \theta  } -30\sin { \theta  } \cos { \theta  } =9$$
    $$\Rightarrow { (5\sin { \theta  } -3\cos { \theta  } ) }^{ 2 }=9$$
    $$\Rightarrow 5\sin { \theta  } -3\cos { \theta  } =\pm 3$$
  • Question 5
    1 / -0
    $$\displaystyle \left (\frac{\sin\, 50^{\circ}}{\cos\, 40^{\circ}} \right)^{2}\, +\, \left (\frac{\cos\, 28^{\circ}}{\sin\, 62^{\circ}} \right)^{2}\, -\, 2\, \tan^{2}\, 45^{\circ}$$
    Solution
    $$\displaystyle \left (\frac{\sin\, 50^{\circ}}{\cos\, 40^{\circ}} \right)^{2}\, +\, \left (\frac{\cos\, 28^{\circ}}{\sin\, 62^{\circ}} \right)^{2}\, -\, 2\, \tan^{2}\, 45^{\circ}$$

    = $$\displaystyle \left (\frac{\sin\, (90 - 40)^{\circ}}{\cos\, 40^{\circ}} \right)^{2}\, +\, \left (\frac{\cos\, 28^{\circ}}{\sin\, (90 - 28)^{\circ}} \right)^{2}\, -\, 2\, \tan^{2}\, 45^{\circ}$$

    = $$\displaystyle \left (\frac{\cos\, 40^{\circ}}{\cos\, 40^{\circ}} \right)^{2}\, +\, \left (\frac{\cos\, 28^{\circ}}{\cos\, 28^{\circ}} \right)^{2}\, -\, 2\, \tan^{2}\, 45^{\circ}$$

    = $$1 + 1 - 2 (1)^2$$

    = $$0$$
  • Question 6
    1 / -0
    If $$x^2\tan^260^o-4x \cos^2 45^o=4 \sin 30^o \cos 60^o \tan 45^o$$ and $$x$$ is not an integer then $$x$$ is equal to:
    Solution
    We know $$ \tan60^\circ = \sqrt{3}, \cos45^\circ =\dfrac {1}{\sqrt{2}}, \sin30^\circ =\dfrac 12, \cos60^\circ =\dfrac 12, \tan45^\circ = 1$$ 

    Using these given equation becomes,

    $$(\sqrt3x)^2-4x\cdot \left(\dfrac {1}{\sqrt2}\right)^2=4\cdot\dfrac 12\cdot \dfrac 12 \cdot 1$$

    $$ 3 x^2 - 2x = 1 \Rightarrow 3x^2 - 2x - 1 =0$$ 

    $$\Rightarrow (3x + 1) (x - 1) = 0$$

    But given x is not an integer,

    Thus,  $$ x = -\dfrac{1}{3}$$ is our solution.
  • Question 7
    1 / -0
    If $$tan\, x^{\circ}\, =\, \dfrac{5}{12},\, tan\, y^{\circ}\, =\, \dfrac{3}{4}$$ and $$AB = 48 m$$; find the length of $$CD$$.

    Solution
    $$\tan x^o = \dfrac{5}{12}$$
    $$\tan y^o = \dfrac{3}{4}$$
    $$AB = 48m$$
    Let $$CD = x\ m$$

    From $$\Delta ACD,$$
    $$\tan  x^o = \dfrac{CD}{AC}$$
    $$ \Rightarrow \dfrac{5}{12}=\dfrac{x}{AC}$$
    $$\Rightarrow AC = \dfrac{12 x}{5}$$

    And from $$\Delta BCD,$$
    $$\tan  y^o = \dfrac{CD}{BC}$$
    $$\Rightarrow \dfrac{3}{4}=\dfrac{x}{BC}$$
    $$\Rightarrow BC = \dfrac{4 x}{3}$$

    From diagram, 
    $$AB = AC - BC$$
    $$\Rightarrow 48 = \dfrac{12 x}{5} - \dfrac{4x}{3}$$
    $$\Rightarrow48 = \dfrac{36 x - 20 x}{15}$$
    $$\Rightarrow16 x = 48\times 15$$
    $$\Rightarrow x = 45$$

    Thus, $$CD = 45$$ m

  • Question 8
    1 / -0
    If $$\sin A = \displaystyle\frac{3}{4}$$, calculate $$\cos A$$ and $$\tan A$$.
    Solution
    Given, $$ \sin A = \displaystyle\frac{3}{4}$$
    $$ \Rightarrow \displaystyle\frac{BC}{DC} = \displaystyle\frac{3}{4}$$
    $$ \Rightarrow BC = 3k$$ and $$AC = 4k$$
    where $$k$$ is the constant of proportionality.
    By Pythagoras theorem, we have
    $$AB^2 = AC^2 - BC^2 = (4k)^2 - (3k)^2 = 7k^2$$
    $$ \Rightarrow AB = \sqrt7k$$
    So, $$ \cos A = \displaystyle\frac{AB}{AC} = \displaystyle\frac{\sqrt7k}{4k} = \displaystyle\frac{\sqrt7}{4}$$
    And $$ \tan A = \displaystyle\frac{BC}{AB} = \displaystyle\frac{3k}{\sqrt7k} = \displaystyle\frac{3}{\sqrt7}$$
  • Question 9
    1 / -0
    Evaluate
    $$(i)\quad \sin60^{\small\circ}\cos30^{\small\circ}+\sin30^{\small\circ}\cos60^{\small\circ}$$

    $$(ii)\quad \displaystyle\frac{5\cos^260^{\small\circ}+4\sec^230^{\small\circ}-\tan^245^{\small\circ}}{\sin^230^{\small\circ}+\cos^230^{\small\circ}}$$
    Solution
    $$(i)\quad \sin60^{\small\circ}\cos30^{\small\circ}+\sin30^{\small\circ}\cos60^{\small\circ}$$
    $$\quad = \left(\displaystyle\frac{\sqrt3}{2}\right)\left(\displaystyle\frac{\sqrt3}{2}\right) + \left(\displaystyle\frac{1}{2}\right)\left(\displaystyle\frac{1}{2}\right) = \left(\displaystyle\frac{\sqrt3}{2}\right)^2 + \left(\displaystyle\frac{1}{2}\right)^2$$
    $$\quad = \displaystyle\frac{3}{4}+\displaystyle\frac{1}{4} = 1$$

    $$(ii)\quad \displaystyle\frac{5\cos^260^{\small\circ}+4\sec^230^{\small\circ}-\tan^245^{\small\circ}}{\sin^230^{\small\circ}+\cos^230^{\small\circ}}$$

    $$ = \quad \displaystyle\frac{5(\cos60^{\small\circ})^2+4(\sec30^{\small\circ})^2-(\tan45^{\small\circ})^2}{(\sin30^{\small\circ})^2+(\cos30^{\small\circ})^2}$$

    $$\quad = \displaystyle\frac{5\left(\displaystyle\frac{1}{2}\right)^2+4\left(\displaystyle\frac{2}{\sqrt3}\right)^2 - (1)^2}{\left(\displaystyle\frac{1}{2}\right)^2 + \left(\displaystyle\frac{\sqrt3}{2}\right)^2}$$

    $$\quad = \displaystyle\frac{\displaystyle\frac{5}{4}+4\times\displaystyle\frac{4}{3} - 1}{\displaystyle\frac{1}{4} + \displaystyle\frac{3}{4}} = \displaystyle\frac{\displaystyle\frac{5}{4}+\displaystyle\frac{16}{3}-1}{\displaystyle\frac{1}{4}+\displaystyle\frac{3}{4}} = \displaystyle\frac{5}{4} + \displaystyle\frac{16}{3} - 1= \displaystyle\frac{15+64-12}{12} = \displaystyle\frac{67}{12}$$
  • Question 10
    1 / -0
    If, $$\displaystyle \tan \, 9^o = \frac{x}{y}$$ then, value of $$\displaystyle \frac{\sec^2\, 81^o}{1+\cot^2\, 81^o}$$ is
    Solution
    Given,
    $$\tan\, 9^{ o }=\dfrac { x }{ y } $$

    $$=\dfrac{\sec^2 \, 81^o}{1 + \cot^2 \, 81^o}$$

    $$= \dfrac{\sec^2 \, 81^o}{cosec^2 \, 81^o}$$

    $$=\dfrac { \dfrac { 1 }{ \cos^{ 2 }81^{ o } }  }{ \dfrac { 1 }{ \sin^{ 2 }81^{ o } } \,  }$$

    $$=\dfrac { \sin^{ 2 }81^{ o } }{ \cos^{ 2 }\, 81^{ o } } $$

    $$=\tan^2 \, 81^o$$

    $$=[\tan(90^o-9^o)]^2$$ 

    $$= (\cot\, 9^o)^2$$

    $$= \cot^2\, 9^o$$

    $$=\dfrac{1}{\tan^2 \, 9^o}$$

    $$=\dfrac{y^2}{x^2}$$
    Hence, option 'D' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now