Self Studies

Introduction to Trigonometry Test - 40

Result Self Studies

Introduction to Trigonometry Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the expression $$[\text{cosec(}75^{\small\circ}+\theta) - \sec(15^{\small\circ}- \theta) - \tan(55^{\small\circ} + \theta) + \cot(35^{\small\circ} - \theta)]$$ is
    Solution
    $$cosec(75^{0}+\theta)-\sec(15^{0}-\theta)-\tan(55^{0}+\theta)+\cot(35^{0}-\theta)$$
    $$=\sec(90^{0}-75^{0}-\theta)-\sec(15^{0}-\theta)-\cot(90^{0}-55^{0}-\theta)+\cot(35^{0}-\theta)$$
    $$=\sec(15^{0}-\theta)-\sec(15^{0}-\theta)-\cot(35^{0}+\theta)+\cot(35^{0}+\theta)$$
    $$=0$$
  • Question 2
    1 / -0
    If $$\sin\theta = \displaystyle\frac{12}{13}$$, then the value of $$\displaystyle\frac{2\cos\theta + 3\tan\theta}{\sin\theta + \tan\theta\sin\theta}$$
    Solution
    $$sin\theta=\dfrac{12}{13}=\dfrac{P}{H}$$
    $$P=12,\,\,H=13$$
    $$\Rightarrow P^2+B^2=H^2\\B=\sqrt{H^2-P^2}=\sqrt{13^2-12^2}={5}$$

    Hence
    $$cos\theta=\dfrac{B}{H}=\dfrac{5}{13}$$
    $$tan\theta=\dfrac{P}{B}=\dfrac{12}{5}$$

    Substituting in the given equation, we get
    $$\dfrac{2\dfrac{5}{13}+3\dfrac{12}{5}}{\dfrac{12}{13}+\dfrac{12\times12}{5\times13}}$$

    $$=\dfrac{50+468}{144+60}$$

    $$=\dfrac{518}{204}$$

    $$=\dfrac{259}{102}$$

  • Question 3
    1 / -0
    If $$\sec{\theta}+\tan{\theta}=P$$, then the value of $$\sin{\theta}$$ is
    Solution
    $$\sec { \theta  } +\tan { \theta  } =P\\ \Rightarrow { \left( \sec { \theta  } +\tan { \theta  }  \right)  }^{ 2 }={ P }^{ 2 }\\ \Rightarrow \sec ^{ 2 }{ \theta  } +\tan ^{ 2 }{ \theta  } +2\tan { \theta  } \sec { \theta  } ={ P }^{ 2 }$$
    $$\displaystyle \Rightarrow 2\tan ^{ 2 }{ \theta  } +1+\frac { 2\sin { \theta  }  }{ \cos { \theta  }  } ={ P }^{ 2 }$$

    $$\displaystyle \Rightarrow \frac { 2\sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +2\sin { \theta  }  }{ \cos ^{ 2 }{ \theta  }  } ={ P }^{ 2 }$$

    Applying componendo and dividendo
    $$\displaystyle \frac { 2\sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +2\sin { \theta  } -\cos ^{ 2 }{ \theta  }  }{ 2\sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +2\sin { \theta  } -\cos ^{ 2 }{ \theta  }  } =\frac { { P }^{ 2 }-1 }{ { P }^{ 2 }+1 } $$

    $$\displaystyle \Rightarrow \frac { 2\sin { \theta  } \left( \sin { \theta  } +1 \right)  }{ 2\left( \sin { \theta  } +1 \right)  } =\frac { { P }^{ 2 }-1 }{ { P }^{ 2 }+1 } \Rightarrow \sin { \theta  } =\frac { { P }^{ 2 }-1 }{ { P }^{ 2 }+1 } $$
  • Question 4
    1 / -0
    If $$ \sin{x}+\sin^{2}{x}=1$$, then the value of $$\cos^{2}{ x}+\cos^{4}{x}$$ is 
    Solution
    Given $$ \sin{x}+\sin^{2}{x}=1$$
    $$\Rightarrow\sin{x}=1-\sin^{2}{x}$$
    $$\Rightarrow \sin x=\cos^{2}{x}$$

    Now,  $$\cos^{2}{x}+\cos^{4}{x}$$
                 $$=\sin{x}+\sin^{2}{x}$$
                 $$=1$$

    $$\Rightarrow \cos^{2}{x}+\cos^{4}{x}=1$$
  • Question 5
    1 / -0
    If $$tan\theta=\sqrt {\displaystyle \frac {a}{b}}$$ where $$a, b$$ are positive reals, then the value of $$\sin\theta \sec^7\theta+\cos\theta co\sec^7\theta$$ is
    Solution
    $$\sin\theta.\sec^{7}\theta+\cos\theta.co\sec^{7}\theta$$
    $$=\tan\theta.\sec^{6}\theta+\cot\theta.co\sec^{6}\theta$$.
    $$=\tan\theta(1+\tan^{2}\theta)^{3}+\cot\theta(1+\cot^{2}\theta)^{3}$$
    $$=\sqrt{\dfrac{a}{b}}(1+\dfrac{a}{b})^{3}+\sqrt{\dfrac{b}{a}}(1+\dfrac{b}{a})^{3}$$

    Upon simplifying, we get 
    $$\dfrac{(a+b)^{3}(a^{4}+b^{4})}{(ab)^{\frac{7}{2}}}$$
  • Question 6
    1 / -0
    If $$\sin\theta+co\sec\theta=2$$, then the value of $$\sin^8\theta+co\sec^8\theta$$ is equal to
    Solution
    $$\sin\theta +cosec\theta =2\\ \Rightarrow \sin\theta +\cfrac { 1 }{ \sin\theta  } =2$$
    Squaring both sides
    $${ \left( \sin\theta +\cfrac { 1 }{ \sin\theta  }  \right)  }^{ 2 }={ 2 }^{ 2 }\\ \Rightarrow { \sin }^{ 2 }\theta +\cfrac { 1 }{ { \sin }^{ 2 }\theta  } +2\sin\theta \cfrac { 1 }{ \sin\theta  } =4\\ \Rightarrow { \sin }^{ 2 }\theta +\cfrac { 1 }{ { \sin }^{ 2 }\theta  } =2$$
    Again squaring bot sides
    $${ \left( { \sin }^{ 2 }\theta +\cfrac { 1 }{ { \sin }^{ 2 }\theta  }  \right)  }^{ 2 }={ 2 }^{ 2 }\\ \Rightarrow { \sin }^{ 4 }\theta +\cfrac { 1 }{ { \sin }^{ 4 }\theta  } =2$$
    Similarly
    $${ \sin }^{ 8 }\theta +\cfrac { 1 }{ { \sin }^{ 8 }\theta  } =2$$
    $$\Rightarrow { \sin }^{ 8 }\theta +{ cosec }^{ 8 }\theta =2$$
  • Question 7
    1 / -0
    If $$\tan A = \displaystyle\dfrac{3}{4}$$ and $$A+B = 90^{\small\circ}$$, then what is the value of $$\cot B$$?
    Solution
    Given,
    $$A+B=90^{ \circ  }$$
    $$=>A=90^{ \circ  }-B$$
    Given,
    $$\tan A=\dfrac{3}{4}$$
    $$=>\cot B=\dfrac{3}{4}$$
  • Question 8
    1 / -0
    If $$(x-2)\sin^230^{\small\circ} + (x-3)\tan^260^{\small\circ} - x\cos^245^{\small\circ} = \displaystyle\frac{17}{4}$$, find the value of $$x$$.
    Solution
    $$\quad (x-2)\sin^230^{\small\circ} + (x-3)\tan^260^{\small\circ} - x\cos^245^{\small\circ} = \displaystyle\frac{17}{4}$$

    $$\quad (x-2)\left(\displaystyle\frac{1}{2}\right)^2 + (x-3)(\sqrt3)^2 - x\left(\displaystyle\frac{1}{\sqrt2}\right)^2 = \displaystyle\frac{17}{4}$$

    $$\quad \Rightarrow \displaystyle\frac{x-2}{4} + 3(x-3) - \displaystyle\frac{x}{2} = \displaystyle\frac{17}{4}$$

    $$\quad \Rightarrow (x-2) + 12x - 36 - 2x = 17$$

    $$\quad \Rightarrow x + 12x - 2x = 17 + 36 + 2 \quad \Rightarrow 11x = 55$$

    $$\quad \Rightarrow x = 5$$
  • Question 9
    1 / -0
    $$\sqrt{(1-\cos^2\theta)\sec^2\theta} = \tan\theta$$.Is it true or false?
    Solution
    $$\sqrt{(1-\cos^{2}\theta)\sec^{2}\theta}$$
    $$=\sqrt{sin^{2}\theta\times\sec^{2}\theta}$$

    $$=\sin\theta\times\sec\theta$$

    $$=\dfrac{\sin\theta}{\cos\theta}$$

    $$=\tan\theta$$

    Hence True.
  • Question 10
    1 / -0
    If $$\sin \theta + \cos \theta = 1$$, then $$\sin \theta \cos \theta =$$.
    Solution
    $$\textbf{Step 1: Apply relevant identity of a trigonometric function and simplify}$$
                    
                    $$\text{We have,}$$

                    $$\sin\theta + \cos\theta = 1$$

                    $$\text{Squaring both sides, we get,}$$

                    $$\left(\sin\theta + \cos\theta\right)^2 = \left(1\right)^2$$

                    $$\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta.\cos\theta = 1$$                      $$\boldsymbol{\left[\because\left(a + b\right)^2 = a^2 + b^2 + 2ab\right]}$$

                    $$\Rightarrow 1 + 2\sin\theta\cos\theta = 1$$

                    $$\Rightarrow \sin\theta\cos\theta = 0$$

    $$\textbf{Hence, the answer is 0}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now