Self Studies

Introduction to Trigonometry Test - 49

Result Self Studies

Introduction to Trigonometry Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \sin \left ( A+B \right ) =\frac{\sqrt{3}}{2}$$ and $$\displaystyle \cot \left ( A-B \right )=1$$, then find $$A$$
    Solution
    Given, $$ \sin(A+B) = \frac {\sqrt{3}}{2} $$
    $$ \Rightarrow  A +B = 60^o $$    -(1)
    And $$ \cot(A-B) = 1 $$
    $$ \Rightarrow A-B = 45^o $$---- (2)
    On ddding equations (1) and (2), we get
    $$ \Rightarrow  2A = 105^0 $$
    $$ \Rightarrow  A = 52\dfrac{1}{2}^0 $$
  • Question 2
    1 / -0
    $$\displaystyle \sec ^{4}\theta -\sec ^{2}\theta $$ in terms of $$\displaystyle \tan \theta  $$ is ___ 
    Solution
    $$\displaystyle \sec ^{4}\theta -\sec ^{2}\theta=(\sec^2\theta)^2-\sec^2\theta=(1+\tan ^2\theta)^2-(1+\tan ^2\theta)=1+\tan ^4\theta+2\tan ^2\theta-1-\tan ^2\theta\\=\tan ^4\theta+\tan ^2\theta$$

    Therefore, Answer is $$\tan ^4\theta+\tan ^2\theta$$
  • Question 3
    1 / -0
    The value of $$\displaystyle \left ( \sin A-\cos A \right )^{2}+\left ( \sin A+\cos A \right )^{2}$$ is _____
    Solution
    $$ (\sin  A - \cos  A)^{2} + (\sin  A + \cos  A)^{2}   = \sin ^{2} A + \cos ^{2} A -2\sin  A \cos  A + \sin ^{2} A + \cos ^{2} A + 2\sin  A \cos  A $$
    $$ = \sin ^{2} A + \cos ^{2} A + \sin ^{2} A + \cos ^{2} A = 1 + 1 = 2$$
    (since, $$ \sin ^{2} A + \cos ^{2} A = 1 $$)
  • Question 4
    1 / -0
    If $$\displaystyle \sin \left ( A+B \right )=\dfrac{\sqrt{3}}{2}$$ and $$\displaystyle \cot  \left ( A-B \right )=\sqrt{3}$$ then find the value of $$B$$.
    Solution
    Given, $$ \sin(A+B) = \dfrac {\sqrt{3}}{2} $$
    $$ \Rightarrow A +B = 60^o $$    -(1)

    And $$ \cot(A-B) = \sqrt {3} $$
    $$ \Rightarrow A-B = 30^o $$---- (2)

    Subtracting eqn 2 from 1
    $$ \Rightarrow 2B= 30^0 $$
    $$ \Rightarrow B= 15^0 $$
  • Question 5
    1 / -0
    The value of $$\displaystyle \sin 30^{\circ}\cdot \sin 45^{\circ} \cdot\text{cosec }45^{\circ}\cdot\cos 30^{\circ} $$ is ___ 
    Solution
    The value of $$ \sin { { 30 }^{ 0 } } .\sin { { 45 }^{ 0 }. } \text {cosec} { 45 }^{ 0 }.\cos { { 30 }^{ 0 } } $$is 
    $$ = \dfrac {1}{2} \times \dfrac {1}{\sqrt {2}} \times \sqrt {2} \times \dfrac {\sqrt {3}}{2} $$
    $$= \dfrac {\sqrt {3}}{4} $$
  • Question 6
    1 / -0
    The simplified value of
    $$\displaystyle \text{cosec} ^{2}\alpha \left ( 1+\frac{1}{\sec \alpha } \right )\left (1-\frac{1}{\sec \alpha }  \right )$$ is _____
    Solution
    We know that $$ \text{cosec}\,  \alpha = \dfrac {1}{\sin  \alpha} $$ and $$ \sec  \alpha = \dfrac {1}{\cos  \alpha} $$

    So, $$ \text{cosec}\,  ^2 \alpha \left(1 + \dfrac {1}{\sec  \alpha}\right)\left(1 - \dfrac {1}{\sec  \alpha}\right) = \dfrac {1}{\sin ^2 \alpha}\left(1+\cos \alpha\right)\left(1-\cos \alpha\right) $$

    $$ = \dfrac {1}{\sin ^2 \alpha}\left(1-\cos ^2\alpha\right) =    \dfrac {1}{\sin ^2 \alpha}\left(\sin ^2\alpha\right) = 1 $$
  • Question 7
    1 / -0
    If $$\displaystyle\tan \theta +\cot \theta =2 $$ find the value of $$\displaystyle \tan ^{1025}\theta +\cot ^{1025}\theta $$
    Solution
    Given $$\tan\theta+\cot\theta=2$$
    $$\Rightarrow \tan\theta+\dfrac{1}{\tan\theta}=2$$
    $$\Rightarrow \tan^2\theta+1=2\tan\theta$$
    $$\Rightarrow \tan^2\theta-2\tan\theta+1=0$$
    $$\Rightarrow (\tan\theta-1)^2=0$$
    $$\Rightarrow \tan\theta=1\therefore \cot\theta=\dfrac{1}{\tan\theta}=\dfrac{1}{1}=1$$

    $$\therefore \tan^{1025}\theta+\cot^{1025}\theta=1^{1025}+1^{1025}=1+1=2$$
  • Question 8
    1 / -0
    If $$\displaystyle \tan \theta -\cot \theta =7  $$ find the value of $$\displaystyle \tan ^{3}\theta -\cot^{3} \theta $$
    Solution
    $$\displaystyle \tan ^{3}\theta -\cot^{3} \theta=( \tan\theta- \cot\theta)(\tan^2\theta+\cot^2\theta+\tan\theta \cot\theta)\\=( \tan\theta- \cot\theta)((\tan\theta-\cot \theta)^2+2\tan\theta cot \theta+\tan \theta \cot \theta)\\=7(7^2+3\tan\theta \cot \theta)=7(49+3)\\=7\times52=364$$

    Therefore, Answer is $$364$$
  • Question 9
    1 / -0
    If $$\displaystyle \text{cosec}\, \theta -\cot \theta =2,$$ then find the value of $$\displaystyle \text{cosec} ^{2}\theta +\cot^{2} \theta.$$
    Solution
    $$cosec\;\theta-\cot\theta=2 \longrightarrow \left( 1 \right) $$
    Now, $$\left( cosec^{ 2 }\theta -\cot ^{ 2 }{ \theta  }  \right) =1$$
    $$\Rightarrow \left( cosec\;\theta -\cot { \theta  }  \right) \left( cosec\;\theta +\cot { \theta  }  \right) =1$$
    $$\Rightarrow 2\left( cosec\;\theta +\cot { \theta  }  \right) =1$$
    $$\Rightarrow \left( cosec\;\theta +\cot { \theta  }  \right) =\dfrac { 1 }{ 2 } \longrightarrow \left( 2 \right) $$
    Adding $$\left( 1 \right) \;\&\;\left( 2 \right) ,$$ we get
    $$\Rightarrow 2\;cosec\;\theta =2+\dfrac { 1 }{ 2 } =\dfrac { 5 }{ 2 } $$
    $$\Rightarrow cosec\;\theta =\dfrac { 5 }{ 4 } $$
    $$\Rightarrow cosec^{ 2 }\theta =\dfrac { 25 }{ 16 } $$
    Again $$\left( 2 \right) \;-\;\left( 1 \right) ,$$ we get
    $$\Rightarrow 2\cot { \theta  } =\dfrac { 1 }{ 2 } -2=-\dfrac { 3 }{ 2 } $$
    $$\Rightarrow \cot { \theta  } =-\dfrac { 3 }{ 4 } $$
    $$\Rightarrow \cot ^{ 2 }{ \theta  } =\dfrac { 9 }{ 16 } $$
    $$\Rightarrow cosec^{ 2 }\theta +\cot ^{ 2 }{ \theta  } =\dfrac { 34 }{ 16 } =\dfrac { 17 }{ 8 } $$
  • Question 10
    1 / -0
    The simplified value of $$\displaystyle \left ( \frac{1-\sin \alpha }{\cos \alpha }+\frac{\cos \alpha }{1+\sin \alpha } \right )\left ( \sec \alpha +\frac{1}{\cot \alpha } \right )$$ is _____
    Solution

    $$ \left( \dfrac  { 1-\sin \alpha  }{ \cos \alpha  } +\dfrac  { \cos \alpha  }{ 1+\sin \alpha  }  \right) \left( \sec \alpha \quad +\quad \dfrac  { 1 }{ \cot \alpha  }  \right) \\= \left( \dfrac  { (1-\sin \alpha )(1+\sin \alpha )+\cos  ^ 2 \alpha \quad  }{ (1+\sin \alpha )\cos \alpha  }  \right) \left( \dfrac  { 1 }{ \cos \alpha  } +\quad \dfrac  { \sin \alpha  }{ \cos \alpha  }  \right) $$
     $$\\ = \left( \dfrac  { (1-\sin ^{ 2 }\alpha +\cos ^{ 2 }\alpha \quad  }{ (1+\sin \alpha )\cos \alpha  }  \right) \left( \dfrac  { 1+\sin \alpha  }{ \cos \alpha  }  \right) \\= \left( \dfrac  { \cos ^{ 2 }\alpha +\cos ^{ 2 }\alpha \quad  }{ \cos \alpha  }  \right) \left( \dfrac  { 1 }{ \cos \alpha  }  \right) \\= 2 $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now