Self Studies

Introduction to Trigonometry Test - 51

Result Self Studies

Introduction to Trigonometry Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a right angled $$\triangle ABD,   \angle B=60^o$$ and $$\angle A=30^o$$.
    Then, $$\cot { 60^o } =$$

    Solution
    Consider an equilateral $$\triangle ABC$$, with each side $$= 2a$$.
    So each angle of $$\triangle ABD$$ is $$60^o$$.

    From $$A$$, draw $$AD \perp BC$$, so $$BD = DC = a$$.

    Also, $$\angle BAD=30^o$$ and $$\angle ADB=90^o$$.

    From right angled $$\triangle ADB,   AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } $$
    $$=\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$.
    $$\cot { 60^o } =\dfrac { base}{ perpendicular  } =\dfrac{BD}{AD}=\dfrac { a }{ \sqrt { 3 } a }=\dfrac{1}{\sqrt3}$$.

    So $$\dfrac { 1 }{ \sqrt { 3 }  }$$ is correct.
  • Question 2
    1 / -0
    In a right angle $$\triangle ABD,  \angle B=60^o$$ and $$\angle A=30^o$$. 
    Then $$\sec { 60 }$$ is equal to:

    Solution
    Consider an equilateral $$\triangle ABC$$, where each side $$= 2a$$.
    From $$A$$, draw $$AD \perp BC$$, 
    so $$BD = DC = a$$, and $$\angle ADB=90^o,   \angle BAD=30^o$$.
    From right angle $$\triangle ADB$$, we have $$AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } =\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } } $$
    $$=\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$.

    $$\sec { 60^o } =\dfrac{hypotenuse}{base}=\dfrac{AB}{BD}=\dfrac{2a}{a}=2$$.

    So, option A that is  $$2$$ is correct.
  • Question 3
    1 / -0
    In a right angled $$\triangle ABD$$, in which $$\angle B=60^o$$ and $$\angle A=30^o$$.
    Then $$\tan { 30^o }$$ is equal to

    Solution
    Consider an equilateral $$\triangle ABC$$, with each side $$= 2a$$.

    So, each angle is $$60^o$$. From $$A$$, draw $$AD \perp BC$$.

    So, $$BD=DC=a,   \angle ADB=90^o,   \angle BAD=30^o$$.

    So, for right angled $$\triangle ADB$$, we have 

    $$AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } =\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$.

    $$\tan { 30 } =\dfrac { BD }{ AD } =\dfrac { a }{ \sqrt { 3 } a } =\dfrac { 1 }{ \sqrt { 3 }  }$$.

    So, $$\dfrac { 1 }{ \sqrt { 3 }  } $$ is correct.
  • Question 4
    1 / -0
    In a right angled $$\triangle ABD,   \angle B=60^o$$ and $$\angle A=30^o$$. 
    Then $$\cos { 30^o }$$ is equal to:

    Solution
    Consider an equilateral $$\triangle ABC$$ with each side $$= 2a$$.

    So, each angle of $$\triangle ABC=60^o$$.

    From $$A$$ draw $$AD \perp BC$$, so $$BD=DC=a,   \angle ADB=90^o,   \angle BAD=30^o$$.

    From right angled $$\triangle ADB$$, we have 

    $$AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } =\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$.

    $$\cos { 30^o } =\dfrac { AD }{ AB } =\dfrac { \sqrt { 3 } a }{ 2a } =\dfrac { \sqrt { 3 }  }{ 2 }$$.

    So, $$\dfrac { \sqrt { 3 }  }{ 2 } $$ is correct.

  • Question 5
    1 / -0
    In a right angled $$\triangle ABD,   \angle B=60^o,   \angle A=30^o$$. 
    Then $$\sin { 30^o }$$ is equal to

    Solution
    Consider an equilateral $$\triangle ABC$$, with each side $$= 2a$$.
    So, each angle of $$\triangle ABC=60^o$$.

    From $$A$$ draw $$AD \perp BC$$. So $$BD = DC = a$$,  $$\angle ADB=90^o,  \angle BAD=30^o$$.

    From right angled $$\triangle ADB$$, we have $$AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } =\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } }$$
    $$ =\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$.

    $$\sin { 30^o } =\dfrac { BD }{ AB } =\dfrac { a }{ 2a } =\dfrac { 1 }{ 2 }$$.

    So, $$\dfrac { 1 }{ 2 } $$ is correct.

  • Question 6
    1 / -0
    In a right angle $$\triangle ABD$$, in which $$\angle B = 60^o$$ and $$\angle A = 30^o$$.
    Then, $$\tan{60^o}$$ is equal to

    Solution
    Consider an equilateral $$\triangle ABC$$ with each side $$= 2a$$.
    So each angle is $$60$$.
    From $$A$$, draw $$\perp AD$$ to $$BC$$, 
    so $$BD = DC = a$$ and $$\angle ADB = 90^o,   \angle BAD = 30^o$$.
    So, for $$\triangle ADB$$, we have $$AD = \sqrt{{AB}^{2} - {BD}^{2}} $$
    $$= \sqrt{{\left(2a\right)}^{2}-{a}^{2}} = \sqrt{4{a}^{2}-{a}^{2}} = \sqrt{3{a}^{2}} = \sqrt{3}a$$.
    $$\therefore \tan 60^o=\dfrac{AD}{BD}=\dfrac{\sqrt 3 a}{a}=\sqrt 3$$


  • Question 7
    1 / -0
    In a right angle $$\triangle ABD,  \angle B=60^o$$ and $$\angle A=30^o$$.
    Then $$\csc{60^o}$$ is equal to:

    Solution
    Consider an equilateral $$\triangle ABC$$ with each side $$= 2a$$.
    Each angle is $$60^o$$.
    From $$A$$, draw $$AD \perp BC$$, then $$BD = DC = a$$.
    Also, $$\angle ADB=90^o,   \angle BAD=30^o$$.
    From right angle $$\triangle ADB$$, we have
    $$AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } =\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } }$$
    $$ =\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$

    $$\csc { 60 } =\dfrac { 1 }{ \sin { 60 }  } =\dfrac { 1 }{ \dfrac { \sqrt { 3 }  }{ 2 }  } =\dfrac { 2 }{ \sqrt { 3 }  }$$
    So $$\dfrac { 2 }{ \sqrt { 3 }  } $$ is correct.
  • Question 8
    1 / -0
    In a right angled $$\triangle ABD$$, in which $$\angle B=60^o$$ and $$\angle A=30^o$$. 
    Then $$\csc { 30 }^o$$ is equal to

    Solution
    Consider an equilateral $$\triangle ABC$$, with each side $$= 2a$$.

    So, each angle is $$60^o$$. 
    From $$A$$, draw $$AD \perp BC$$.

    So, $$BD=DC=a,   \angle ADB=90^o,   \angle BAD=30^o$$.

    So, for right angled $$\triangle ADB$$, we have 
    $$AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } =\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$.

    Now $$\csc { 30 } =\dfrac {AB}{BD} =\dfrac { 2a }{ a  } =2$$.

  • Question 9
    1 / -0
    In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o=\angle C$$, then $$cosec { 45^o } =$$

    Solution
    $$\angle A = \angle C \Rightarrow AB = BC = a$$

    $$AC = \sqrt{{AB}^{2}+{BC}^{2}} = \sqrt{{a}^{2}+{a}^{2}} = \sqrt{2{a}^{2}} = \sqrt{2} a$$

    $$\csc{45^o} = \dfrac{hypotenuse}{base} =\dfrac{AC}{AB}= \dfrac{\sqrt2 a}{{a}} = \sqrt{2}$$

    So, $$\sqrt{2}$$ is correct.
  • Question 10
    1 / -0
    In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o=\angle C$$, then $$\cot { 45^o } =$$

    Solution
    $$\angle A = \angle C \Rightarrow AB = BC = a$$

    $$AC = \sqrt{{AB}^{2}+{BC}^{2}} = \sqrt{{a}^{2}+{a}^{2}} = \sqrt{2{a}^{2}} = \sqrt{2} a$$

    $$\cos{45^o} = \dfrac{base}{perpendicular} =\dfrac{AB}{BC}= \dfrac{1}{1} = 1$$

    So $$1$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now