Self Studies

Introduction to Trigonometry Test - 53

Result Self Studies

Introduction to Trigonometry Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $${\cos}^{2}{30^\circ}\ {\cos}^{2}{45^\circ}+4\ {\sec}^{2}{60^\circ}+\dfrac{1}{2}\  {\cos}^{2}{90^\circ}-2{\tan}^{2}{60^\circ} =$$
    Solution
    Taking $$\cos ^{ 2 }{ 30^\circ } \cos ^{ 2 }{ 45^\circ } +4\sec ^{ 2 }{ 60^\circ } +\frac { 1 }{ 2 } \cos ^{ 2 }{ 90^\circ } -2\tan ^{ 2 }{ 60^\circ } $$

    substitute the values of $$\cos 30^\circ$$,  $$\cos 45^\circ$$, $$\cos 90^\circ$$, $$\sec 60^\circ$$, $$\tan 60^\circ$$

     $$={ \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }\times { \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }+4\times { \left( 2 \right)  }^{ 2 }+\dfrac { 1 }{ 2 } \times { 0 }^{ 2 }-[2\times { \left( \sqrt { 3 }  \right)  }^{ 2 }]$$

     $$=\bigg(\dfrac { 3 }{ 4 } \times \dfrac { 1 }{ 2 }\bigg) +16-6$$

     $$=\dfrac { 3 }{ 8 } +10$$

    $$=\dfrac { 3+80 }{ 8 } $$

     $$=\dfrac { 83 }{ 8 } $$
  • Question 2
    1 / -0
    Value of $$\left(3{\cos}^{2}{60^0}+2{\cot}^{2}{30^0}-5{\sin}^{2}{45^0}\right)$$ is:
    Solution
    Given: 
    $$\left( 3\cos ^{ 2 }{ 60^0} +2\cot ^{ 2 }{ 30^0 } -5\sin ^{ 2 }{ 45^0 }  \right) $$ 

    Substituting the value of sin $$45^ 0$$ , cos $$60^ 0$$, cot $$30^ 0$$ we get,
     
    $$=3\times { \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 }+2\times { \left( \sqrt { 3 }  \right)  }^{ 2 }-5\times { \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }$$

     $$=\left( 3\times \dfrac { 1 }{ 4 }  \right) +\left( 2\times 3 \right) -\left( 5\times \dfrac { 1 }{ 2 }  \right) $$

     $$=\dfrac { 3 }{ 4 } +6-\dfrac { 5 }{ 2 } $$

     $$=\dfrac { 3+24-10 }{ 4 } =\dfrac { 17 }{ 4 } $$
  • Question 3
    1 / -0
    Value of $$\left(\cos{60^o}\cos{30^o}-\sin{60^o}\sin{30^o}\right)$$ is 
    Solution
    $$\left( \cos { 60^0 } \cos { 30^0-\sin { 60^0 } \sin { 30^0 }  }  \right) $$

     $$=\dfrac { 1 }{ 2 } \times \dfrac { \sqrt { 3 }  }{ 2 } -\dfrac { \sqrt { 3 }  }{ 2 } \times \dfrac { 1 }{ 2 } $$

    $$=\dfrac { \sqrt { 3 }  }{ 4 } -\dfrac { \sqrt { 3 }  }{ 4 } $$

    $$=0$$
  • Question 4
    1 / -0
    $$\dfrac {2}{3}(\cos^{4} 30^0 - \sin^{4} 45^0) - 3 (\sin^{2}60^0 - \sec^{2} 45^0) + \dfrac {1}{4} \cot^{2} 30^0 = $$
    Solution
    Given
    $$\dfrac { 2 }{ 3 } \left( \cos ^{ 4 }{ { 30^o-\sin ^{ 4 }{ { 45^o }  }  }  }  \right) -3\left( \sin ^{ 2 }{ { 60^o }  } -\sec ^{ 2 }{ { 45^o }  }  \right) +\dfrac { 1 }{ 4 } \cot ^{ 2 }{ 30^0 } $$
    $$=\dfrac { 2 }{ 3 } \left[ { \left( \frac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 4 }-{ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 4 } \right] -3\left[ { \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }-{ \left( \sqrt { 2 }  \right)  }^{ 2 } \right] +\dfrac { 1 }{ 4 } \times { \left( \sqrt { 3 }  \right)  }^{ 2 }$$
     $$=\dfrac { 2 }{ 3 } \left( \dfrac { 9 }{ 16 } -\dfrac { 1 }{ 4 }  \right) -3\left( \dfrac { 3 }{ 4 } -2 \right) +\dfrac { 3 }{ 4 } $$
     $$=\dfrac { 2 }{ 3 } \left( \dfrac { 9-4 }{ 16 }  \right) -3\left( \dfrac { 3-8 }{ 4 }  \right) +\dfrac { 3 }{ 4 } $$
     $$=\dfrac { 2 }{ 3 } \times \dfrac { 5 }{ 16 } -3\left( -\dfrac { 5 }{ 4 }  \right) +\dfrac { 3 }{ 4 } $$
     $$=\dfrac { 5 }{ 24 } +\dfrac { 15 }{ 4 } +\dfrac { 3 }{ 4 } $$

     $$=\dfrac { 5+90+18 }{ 24 } $$
     $$=\dfrac { 113 }{ 24 } $$
  • Question 5
    1 / -0
    $$\left( \dfrac { 4 }{ 3 } \cot ^{ 2 }{ 30^0 } +3\sin ^{ 2 }{ 60^0 } -2\csc ^{ 2 }{ 60^0 } -\dfrac { 3 }{ 4 } \tan ^{ 2 }{ 30^0 }  \right) =$$
    Solution
    $$\dfrac { 4 }{ 3 } \cot ^{ 2 }{ 30 } +3\sin ^{ 2 }{ 60 } -2\csc ^{ 2 }{ 60 } -\dfrac { 3 }{ 4 } \tan ^{ 2 }{ 30 } $$
    $$=\dfrac { 4 }{ 3 } \times { \left( \sqrt { 3 }  \right)  }^{ 2 }+{ 3\left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }-2{ \left( \dfrac { 2 }{ \sqrt { 3 }  }  \right)  }^{ 2 }-\dfrac { 3 }{ 4 } { \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  }^{ 2 }$$, substitute the values from the table 
    $$=\dfrac { 4 }{ 3 } \times 3+3\times \dfrac { 3 }{ 4 } -2\times \dfrac { 4 }{ 3 } -\dfrac { 3 }{ 4 } \times \dfrac { 1 }{ 3 } $$
    $$=4+\dfrac { 9 }{ 4 } -\dfrac { 8 }{ 3 } -\dfrac { 1 }{ 4 } $$
    $$=\dfrac { 40 }{ 12 } = \dfrac { 10 }{ 3 } $$.
  • Question 6
    1 / -0
    Value of $$\left(\cos{0^0}+\sin{30^0}+\sin{45^0}\right)\left(\sin{90^0}+\cos{60^0}-\cos{45^0}\right)$$ is
    Solution
    Taking 
    $$\left( \cos { 0^0 } +\sin { 30^0 } +\sin { 45 ^0}  \right) \left( \sin { 90^0+ } \cos { 60^0-\cos { 45^0 }  }  \right) $$
    Substituting the values of $$cos 0^0,cos 45^0,cos 60^0, sin 30^0,sin 45^0,sin 90^0$$ we get
     $$=\left( 1+\dfrac { 1 }{ 2 } +\dfrac { 1 }{ \sqrt { 2 }  }  \right) \left( 1+\dfrac { 1 }{ 2 } -\dfrac { 1 }{ \sqrt { 2 }  }  \right) $$ taking L.C.M  
     $$=\left( \dfrac { 3 }{ 2 } +\dfrac { 1 }{ \sqrt { 2 }  }  \right) \left( \dfrac { 3 }{ 2 } -\dfrac { 1 }{ \sqrt { 2 }  }  \right) $$  using $$(a^2-b^2)=(a-b)(a+b)$$
    $$={ \left( \dfrac { 3 }{ 2 }  \right)  }^{ 2 }-{ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }$$
     $$=\dfrac { 9 }{ 4 } -\dfrac { 1 }{ 2 } =\dfrac { 7 }{ 4 } $$
  • Question 7
    1 / -0
    Value of $$\left({\sin}^{2}{30}+4{\cot}^{2}{45}-{\sec}^{2}{60}\right)$$ is
    Solution
    Taking 
    $$\left( \sin ^{ 2 }{ 30^0 } +4\cot ^{ 2 }{ 45^0-\sec ^{ 2 }{ 60^0 }  }  \right) $$
    substituting the value of sin $$30^ 0$$, cot$$45^ 0$$,  $$sec60^ 0$$
     $$={ \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 }+4\times { \left( 1 \right)  }^{ 2 }-{ 2 }^{ 2 }$$
     $$=\dfrac { 1 }{ 4 } +4-4$$

     $$=\dfrac { 1 }{ 4 } $$
  • Question 8
    1 / -0
    Find the value of:
    $$\sin ^{ 2 }{ 30^0 } \cos ^{ 2 }{ 45^0 } +4\tan ^{ 2 }{ 30^0 } +\cfrac { 1 }{ 2 } \sin ^{ 2 }{ 90^0 } +\cfrac { 1 }{ 2 } \cot ^{ 2 }{ 60^0 } $$
    Solution
    $$\sin ^{ 2 }{ 30^0 } \cos ^{ 2 }{ 45^0 } +4\tan ^{ 2 }{ 30^0 } +\dfrac { 1 }{ 2 } \sin ^{ 2 }{ 90^0 } +\dfrac { 1 }{ 2 } \cot ^{ 2 }{ 60^0 } $$

    $$={ \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 }\times { \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }+4\times { \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  }^{ 2 }+\dfrac { 1 }{ 2 } \times { \left( 1 \right)  }^{ 2 }+\dfrac { 1 }{ 2 } \times { \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  }^{ 2 }$$, 

    $$=\dfrac { 1 }{ 4 } \times \dfrac { 1 }{ 2 } +4\times \dfrac { 1 }{ 3 } +\dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 3 } $$

    $$=\dfrac { 1 }{ 8 } +\dfrac { 4 }{ 3 } +\dfrac { 1 }{ 2 } +\dfrac { 1 }{6 } $$

    $$=\dfrac { 3+32+12+4 }{ 24 } $$

    $$=\dfrac { 17 }{ 8 }$$
  • Question 9
    1 / -0
    $$(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ}) (\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ}) = $$
    Solution
    $$\left( \cos {  { 0^o } + } \sin {  { 45^o } + } \sin {  { 30^o }  }  \right) \left( \sin { { 90^o- }  } \cos {  { 45^o+ }  } \cos {{ 60^o }  }  \right) $$

     $$=\left( 1+\dfrac { 1 }{ \sqrt { 2 }  } +\dfrac { 1 }{ 2 }  \right) \left( 1-\dfrac { 1 }{ \sqrt { 2 }  } +\dfrac { 1 }{ 2 }  \right) $$

     $$=\left( 1+\dfrac { 1 }{ 2 } +\dfrac { 1 }{ \sqrt { 2 }  }  \right) \left( 1+\dfrac { 1 }{ 2 } -\dfrac { 1 }{ \sqrt { 2 }  }  \right) $$

     $$=\left( \dfrac { 3 }{ 2 } +\dfrac { 1 }{ \sqrt { 2 }  }  \right) \left( \dfrac { 3 }{ 2 } -\dfrac { 1 }{ \sqrt { 2 }  }  \right) $$

     $$={ \left( \dfrac { 3 }{ 2 }  \right)  }^{ 2 }-{ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }$$

     $$=\dfrac { 9 }{ 4 } -\dfrac { 1 }{ 2 } =\dfrac { 7 }{ 4 } $$
  • Question 10
    1 / -0
    In $$\triangle ABC$$, if $$AD\perp BC$$ and $$BD = 10\ cm; \angle B = 60^{\circ}$$ and $$\angle C = 30^{\circ}$$, then $$CD = .........$$
    Solution
    In right angled $$\triangle ABD$$,

    $$\tan B = \dfrac {AD}{BD} = \dfrac {AD}{10}$$

    $$\Rightarrow \tan 60^{\circ} = \dfrac {AD}{10}\Rightarrow \sqrt {3} = \dfrac {AD}{10}$$

    $$\Rightarrow AD = 10\sqrt {3}$$

    Also, in $$\triangle ACD$$, 
    $$\tan 30^{\circ} = \dfrac {AD}{DC} = \dfrac {1}{\sqrt {3}} \Rightarrow \dfrac {10\sqrt {3}}{DC} = \dfrac {1}{\sqrt {3}}$$

    $$\Rightarrow DC = 30\ cm$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now