Self Studies

Introduction to Trigonometry Test - 54

Result Self Studies

Introduction to Trigonometry Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\dfrac { \tan ^{ 2 }{ 60^0 } +4\sin ^{ 2 }{ 45^0 } +3\sec ^{ 2 }{ 30 ^0} +5\cos ^{ 2 }{ 90^0 }  }{ \csc { 30^0 } +\sec { 60 ^0} -\cot ^{ 2 }{ 30^0 }  }  =$$
    Solution
    Given that: $$\dfrac { \tan ^{ 2 }{ 60^0+4\sin ^{ 2 }{ 45^0+3\sec ^{ 2 }{ 30^0+5\cos ^{ 2 }{ 90^0 }  }  }  }  }{ \csc { 30^0+ } \sec { 60^0-\cot ^{ 2 }{ 30^0 }  }  } $$

     $$=\dfrac { { \left( \sqrt { 3 }  \right)  }^{ 2 }+4\times { \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }+3\times { \left( \dfrac { 2 }{ \sqrt { 3 }  }  \right)  }^{ 2 }+5\times 0 }{ 2+2-{ \left( \sqrt { 3 }  \right)  }^{ 2 } } $$

     $$=\dfrac { 3+4\times \dfrac { 1 }{ 2 } +3\times \dfrac { 4 }{ 3 } +0 }{ 4-3 } $$

     $$=\dfrac { 3+2+4+0 }{ 1 } $$

    $$=9$$
  • Question 2
    1 / -0
    If $$(\sin \theta - \cos \theta) = 0$$, then $$(\sin^{4} \theta + \cos^{4} \theta) =$$
    Solution
    $$\sin { \theta - } \cos { \theta  } =0$$
     $$\sin { \theta =\cos { \theta  }  }$$
     $$\dfrac { \sin { \theta  }  }{ \cos { \theta  }  } =1$$
     $$\tan { \theta =1 } $$
    We know that  $$\tan { \mathring { 45=1 }  } $$
     $$so,\theta =\mathring { 45 } $$

    $$\left( \sin ^{ 4 }{ \theta + } \cos ^{ 4 }{ \theta  }  \right) $$
     $$\left( \sin ^{ 4 }{ \mathring { 45 } + } \cos ^{ 4 }{ \mathring { 45 }  }  \right) $$ $$=\left\{ { \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 4 }+{ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 4 } \right\} $$
                                               $$=\left\{ \dfrac { 1 }{ 4 } +\dfrac { 1 }{ 4 }  \right\} $$
                                               $$=\dfrac { 2 }{ 4 } =\dfrac { 1 }{ 2 } $$
  • Question 3
    1 / -0
    $$\dfrac { 1 }{ 4 } \left[ \cot ^{ 4 }{ 30^0 } -\csc ^{ 4 }{ 60^0 }  \right] +\dfrac { 3 }{ 2 } \left[ \sec ^{ 2 }{ 45^0 } -\tan ^{ 2 }{ 30^0 }  \right] -5\cos ^{ 2 }{ 60^0 } =$$
    Solution
    $$\dfrac { 1 }{ 4 } \left[ \cot ^{ 4 }{ 30^0 } -\csc ^{ 4 }{ 60^0 }  \right] +\dfrac { 3 }{ 2 } \left[ \sec ^{ 2 }{ 45^0 } -\tan ^{ 2 }{ 30^0 }  \right] -5\cos ^{ 2 }{ 60^0 } =$$
    $$ =\dfrac { 1 }{ 4 } \left[ { \left( \sqrt { 3 }  \right)  }^{ 4 }-{ \left( \dfrac { 2 }{ \sqrt { 3 }  }  \right)  }^{ 4 } \right] +\dfrac { 3 }{ 2 } \left[ { \left( \sqrt { 2 }  \right)  }^{ 2 }-{ \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  }^{ 2 } \right] -5\times { \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 }$$, substitute the values from the table 
    $$ =\dfrac { 1 }{ 4 } \left( 9-\dfrac { 16 }{ 9 }  \right) +\dfrac { 3 }{ 2 } \left( 2-\dfrac { 1 }{ 3 }  \right) -\dfrac { 5 }{ 4 } $$
    $$=\dfrac { 65 }{ 36 } +\dfrac { 5 }{ 2 } -\dfrac { 5 }{ 4 } =\dfrac { 110 }{ 36 } =\dfrac { 55 }{ 18 } $$
  • Question 4
    1 / -0
    $$4\left( \sin ^{ 4 }{ 30^0} +\cos ^{ 4 }{ 60^0 }  \right) -\dfrac { 2 }{ 3 } \left( \sin ^{ 2 }{ 60^0 } -\cos ^{ 2 }{ 45^0 }  \right) +\dfrac { 1 }{ 2 } \tan ^{ 2 }{ 60^0 } =$$
    Solution
    $$4\left( \sin ^{ 4 }{ 30^0} +\cos ^{ 4 }{ 60^0 }  \right) -\dfrac { 2 }{ 3 } \left( \sin ^{ 2 }{ 60^0 } -\cos ^{ 2 }{ 45^0 }  \right) +\dfrac { 1 }{ 2 } \tan ^{ 2 }{ 60^0 } $$
    $$ =4\left[ { \left( \dfrac { 1 }{ 2 }  \right)  }^{ 4 }+{ \left( \dfrac { 1 }{ 2 }  \right)  }^{ 4 } \right] -\dfrac { 2 }{ 3 } \left[ { \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }-{ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 } \right] +\dfrac { 1 }{ 2 } \times { \left( \sqrt { 3 }  \right)  }^{ 2 }$$
    $$ =4\left( \dfrac { 1 }{ 16 } +\dfrac { 1 }{ 16 }  \right) +\dfrac { 2 }{ 3 } \left( \dfrac { 3 }{ 4 } -\dfrac { 1 }{ 2 }  \right) +\dfrac { 3 }{ 2 }$$
    $$ =4\times \dfrac { 1 }{ 8 } -\dfrac { 2 }{ 3 } \times \dfrac { 1 }{ 4 } +\dfrac { 3 }{ 2 }$$
    $$ =\dfrac { 1 }{ 2 } -\dfrac { 1 }{ 6 } +\dfrac { 3 }{ 2 }$$
    $$ =\dfrac { 11 }{ 6 } $$
  • Question 5
    1 / -0
    $$2\sin 30˚ + 2\tan 45˚ - 3\cos 60˚ - 2\cos^{2} 30˚ =$$
    Solution
    $$2\sin 30˚ + 2\tan 45˚ - 3\cos 60˚ - 2\cos^{2} 30˚$$
    $$= 2\times \dfrac {1}{2} + 2\times 1 - 3\times \dfrac {1}{2} - 2\left (\dfrac {\sqrt {3}}{2}\right )^{2}$$
    $$= 1 + 2 - \dfrac {3}{2} - \dfrac {3}{2}$$
    $$= 0$$
  • Question 6
    1 / -0
    $$\sin 30^{\circ} \cos 60^{\circ} + \sin 60^{\circ} \cos 30^{\circ}  $$ is equal to
    Solution
    Given: $$\sin {  { 30^o }  } \cos {  { 60^o }  } +\sin {  { 60 ^o }  } \cos {  { 30^o }  } $$
                                                       (Putting the values as per trigonometry table)
    $$=\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 }  }{ 2 } \times \dfrac { \sqrt { 3 }  }{ 2 } $$

     $$=\dfrac { 1 }{ 4 } +\dfrac { 3 }{ 4 } =\dfrac { 4 }{ 4 } =1$$
     
  • Question 7
    1 / -0
    If $$\cos ^{ 2 }{ 45^o- } \cos ^{ 2 }{ 30^o=x\cos {  { 45^o\sin {  { 45^o }  }  }  }  } $$, then $$x = $$
    Solution
    Given that: $$\cos ^{ 2 }{ 45^o- } \cos ^{ 2 }{ 30^o=x\cos {  { 45^o\sin {  { 45^o }  }  }  }  } $$
     $$\therefore \quad x=\dfrac { \cos ^{ 2 }{ 45^o- } \cos ^{ 2 }{ 30^o }  }{ \cos {  { 45^o\sin {  { 45^o }  }  }  }  } $$

     $$x=\dfrac { { \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }-{ \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 } }{ \dfrac { 1 }{ \sqrt { 2 }  } \times \dfrac { 1 }{ \sqrt { 2 }  }  } =\dfrac { \dfrac { 1 }{ 2 } -\dfrac { 3 }{ 4 }  }{ \dfrac { 1 }{ 2 }  } =\dfrac { \dfrac { 2-3 }{ 4 }  }{ \dfrac { 1 }{ 2 }  } =\dfrac { -1 }{ 4 } \times 2=-\dfrac { 1 }{ 2 } $$
  • Question 8
    1 / -0
    $$\cos^{2}45^0 + \sin^{2}60^0 + \sin^{2} 30^0 = $$
    Solution
    Taking 
    $$\cos^{2}45^0 + \sin^{2}60^0 + \sin^{2} 30^0  $$
    Substituting the values of sin $$30 ^0$$ , sin $$60 ^0$$ , cos $$45 ^0$$
     $$={ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }+{ \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }+{ \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 }$$
     $$=\dfrac { 1 }{ 2 } +\dfrac { 3 }{ 4 } +\dfrac { 1 }{ 4 } $$

     $$=\dfrac { 6 }{ 4} $$

     $$=\dfrac { 3 }{ 2 } $$
  • Question 9
    1 / -0
    Solve: $$\sec 70^{\circ} \sin 20^{\circ} + \cos 20^{\circ} \text{cosec } 70^{\circ} $$
    Solution
    Given:
    $$\sec 70^{\circ} \sin 20^{\circ} + \cos 20^{\circ} \text{cosec} 70^{\circ}$$

    $$= \sec 70^{\circ} \sin (90^{\circ} - 70^{\circ}) + \cos 20^{\circ} \text{cosec} (90^{\circ} - 20^{\circ})$$

    $$= \sec 70^{\circ} \cos 70^{\circ} + \cos 20^{\circ} \sec 20^{\circ}$$    $$[\because \sin(90^{\circ}-\theta)=\cos \theta$$ and $$\text{cosec}(90^{\circ}-\theta)=\sec \theta]$$

    $$= 1 + 1$$     $$[\because ~\sec \theta.\cos \theta=1]$$

    $$= 2$$

    So, $$2$$ is correct.
  • Question 10
    1 / -0
    $$\sec (90 - \theta) = $$

    Solution
    In the figure,
    $$\sec (90 - \theta) = \dfrac {r}{y} = \csc \theta$$

    So, $$\sec (90 - \theta) = \csc \theta$$

    So, $$\csc \theta$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now