Self Studies

Introduction to Trigonometry Test - 61

Result Self Studies

Introduction to Trigonometry Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Refer to the above figure and find the length of $$AC$$, if the area of triangle $$ABC$$ is $$15$$.

    Solution
    By sine rule, we get $$\dfrac { AC }{ \sin52 } =\dfrac { CB }{ \sin38 } $$ , which implies $$CB = 0.7813 AC$$
    Area of triangle is $$\dfrac {1}{2} \times AC \times CB = 0.39 { AC }^{ 2 } = 15$$
    $$\Rightarrow {AC}^{2} = 38.46$$
    $$\Rightarrow AC = 6.2$$
  • Question 2
    1 / -0
    Calculate the value of $$x$$ if the value of $$\theta = 67^{\circ}$$ in the right angled triangle shown in the above figure.

    Solution
    Given, $$\theta= 67^o$$
    $$\cos \theta = \dfrac {7}{x}$$ 
    $$\therefore \theta = 67$$ degrees
    $$\therefore \cos(67) = \dfrac {7}{x} = 0.39$$
    $$\Rightarrow x = \dfrac {7}{(0.39)} = 17.9$$
  • Question 3
    1 / -0
    Find the value of $$\tan (3x) \cot (3x) $$ if it is defined.
    Solution
    The value of $$\tan(3x)\cot(3x) $$
    $$=\tan(3x) \times \dfrac {1}{\tan(3x)} = 1$$ ..... (As $$\cot \theta =\dfrac {1}{\tan \theta}$$)
  • Question 4
    1 / -0
    The length of side $$DF$$, if the area of triangle $$DEF$$ is $$32\sqrt {3}$$ square units is

    Solution
    Given : Area of $$\triangle DEF=32\sqrt{3}\ sq. units$$
    We know that, Area of right angle triangle $$= \dfrac 12 \times base \times height$$
    $$\implies 32\sqrt { 3 } =\dfrac { 1 }{ 2 } DE\times DF$$ ...... $$(1)$$

    But, $$\dfrac { DE }{ DF } =\tan { { 60 }^{ o } } $$
    $$\implies DE=\sqrt { 3 } DF$$
    Substituting in $$(1)$$, we get
    $$32\sqrt { 3 } =\dfrac { 1 }{ 2 } (\sqrt { 3 } DF)\times DF$$
    $$\implies DF^2=64$$
    $$\therefore DF=8$$ units.
  • Question 5
    1 / -0
    Simplify $$12\sqrt{3}-(8 \cos x)\left(\displaystyle\frac{3\sqrt 3}{2}\cos x\right)$$.
    Solution
    The value of $$12 \sqrt3 - (8\cos x)\left (\dfrac { 3\sqrt { 3 }  }{ 2 } \cos x\right)$$
    $$= 12 \sqrt3 - 12 \sqrt3 \cos ^{ 2 }{ x } $$
    $$ = 12 \sqrt3 (1-\cos ^{ 2 }{ x } ) $$
    $$= 12 \sqrt3 \sin ^{ 2 }{ x } $$
  • Question 6
    1 / -0
    Simplify $$1 - 2\sin^{2}\theta - 2\cos^{2} \theta $$.
    Solution
    We will use $${ \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta =1$$ to simplify the given expression.

    So, we have
    $$\begin{aligned}{}1 - 2{\sin ^2}\theta  - 2{\cos ^2}\theta & = 1 - 2\left( {{{\sin }^2}\theta  + {{\cos }^2}\theta } \right)\\& = 1 - 2\left( 1 \right)\\ &= 1 - 2\\ &=  - 1\end{aligned}$$

    Hence, option $$B$$ is correct.
  • Question 7
    1 / -0
    Find the length of $$AC$$ in the above figure.

    Solution
    As per given figure $$ACB$$ is the right angle triangle and $$AB=5$$ and $$\angle CAB=3x$$ and $$\angle ABC=2x$$
    In triangle $$ACB$$, we have
    $$2x+3x+90=180$$
    $$\Rightarrow 5x=180-90$$
    $$\Rightarrow x=18$$
    Then $$\angle CAB=54$$ and $$\angle ABC=36$$
    $$\sin 36^{0}=\dfrac{AC}{5}$$
    $$\Rightarrow AC=5\times \sin36^{0}$$
    $$\Rightarrow AC=5\times 0.5581=2.79$$
  • Question 8
    1 / -0
    In the figure, $$ABCD$$ is a rectangle. Calculate the area of $$ABCD$$.

    Solution
    The diagonal of a rectangle divides it into two equal right triangles,Triangle $$ABC$$ and Triangle $$ADC$$.

    In triangle $$ADC$$,

    $$\sin 30^0=\dfrac{CD}{2}$$

    $$\Rightarrow \dfrac{1}{2}=\dfrac{CD}{2}$$

    $$CD=1$$

    Applying Pythagorean theorem, we get

    $$AC^2=AD^2+CD^2$$

    $$\Rightarrow AD^2=2^2-1^2$$

    $$\Rightarrow AD=\sqrt3$$

    So, height of
    triangle $$ACD$$, $$CD=1$$

    Length of the base
    of $$\triangle ACD,$$ $$AD=\sqrt3$$

    Area of triangle $$ACD$$,

    $$=\dfrac{1}{2}\times$$ base $$\times$$ height 

    $$=\dfrac{1}{2}\times {\sqrt3} \times1$$

    $$=\dfrac{\sqrt3}{2}$$

    Similarly,the area of
    right triangle $$ABC$$ $$=\dfrac{\sqrt3}{2}$$ 

    So, the area of rectangle$$=$$
    area of right triangle $$ABC$$ $$+$$ Area of triangle $$ACD=$$ $$\dfrac{\sqrt3}{2}$$$$+\dfrac{\sqrt3}{2}=\sqrt3$$.

  • Question 9
    1 / -0
    If $$t = 45^{\circ}$$, what is $$\sec (t) \sin (t) - \mathrm{cosec} (t) \cos (t)$$?
    Solution
    For $$t=45^0$$, the value of $$\sec { (t) } \sin { (t) } -\csc { (t) } \cos { (t) }$$ may be determined as follows:
    $$\sec { (t) } \sin { (t) } -\csc { (t) } \cos { (t) } =\sec { (45^{ 0 }) } \sin { (45^{ 0 }) } -\csc { (45^{ 0 }) } \cos { (45^{ 0 }) }$$
    $$ =\sqrt { 2 } \times \dfrac { 1 }{ \sqrt { 2 }  } -\sqrt { 2 } \times \dfrac { 1 }{ \sqrt { 2 }  } $$
    $$=1-1$$
    $$=0$$
  • Question 10
    1 / -0
    Find the value of $$\dfrac {\cos 75^{\circ} . \sin 12^{\circ}. \cos 18^{\circ}}{\sin 15^{\circ}. \cos 78^{\circ} . \sin 72^{\circ}}$$
    Solution
    Given trigonometric expression is $$\dfrac { \cos { 75° } \sin { 12° } \cos { 18° }  }{ \sin { 15°\cos { 78° } \sin { 22° }  }  }$$

    We can write, $$\cos\ 75°$$ as $$\cos (90°-15°), \sin\ 12°$$ as $$\sin (90°-78°)$$ and $$\cos\ 18°$$ as $$\cos (90°-72°)$$

    Hence,
    $$\dfrac { \cos { 75° } \sin { 12° } \cos { 18° }  }{ \sin { 15°\cos { 78° } \sin { 22° }  }  } =\dfrac { \cos { \left( 90°-15° \right)  } \sin { \left( 90°-78° \right)  } \cos { \left( 90°-72° \right)  }  }{ \sin { 15°\cos { 78° } \sin { 22° }  }  } $$

    We know that, $$\cos(90°-\theta)=\sin \theta$$ and $$\sin(90°-\theta)=\cos \theta$$

    Hence, we get:

    $$\dfrac { \sin { 15°\cos { 78° } \sin { 22° }  }  }{ \sin { 15°\cos { 78° } \sin { 22° }  }  } $$

    $$=1$$

    Hence, the answer is $$\dfrac { \cos { 75° } \sin { 12° } \cos { 18° }  }{ \sin { 15°\cos { 78° } \sin { 22° }  }  }=1$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now