$$\cos\left({\cfrac{\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$
Multiplying numerators and denominator by $$2\sin\left(\pi/10\right)$$
$$\dfrac{1}{2\sin(\pi/10)}\times 2\sin\left({\cfrac{\pi}{10}}\right)\cos\left({\cfrac{\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left(\dfrac{16\pi}{10}\right)$$
$$\dfrac{1}{2\sin(\pi/10)}\sin\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$
Multiplying numerators and denominator by $$2$$, we get
$$=\dfrac{1}{4\sin(\pi/10)}\times 2\sin\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$
$$=\dfrac{1}{4\sin(\pi/10)}\times \sin\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$
$$[As\, ,2\sin\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)=\sin\left({\cfrac{4\pi}{10}}\right)]$$
$$=\dfrac{1}{32\sin(\pi/10)} \sin\left( \dfrac{32\pi}{10}\right)$$
$$=\dfrac{\sin(3\pi+\dfrac{2\pi}{10})}{32\sin(\pi/10)}$$
$$=\dfrac{-\sin(2\pi/10)}{32\sin(\pi/10)}$$ $$[As,\sin(3\pi+\theta)=-\sin\theta]$$
$$\dfrac{-2\sin(\pi/10)\cos(\pi/10)}{32\sin(\pi/10)}$$ [As, $$\sin(2\pi/10)=2\sin(\pi/10)\cos(\pi/10)$$]
$$=-\dfrac{-1}{16}\cos(\pi/10)$$