Self Studies

Introduction to Trigonometry Test - 65

Result Self Studies

Introduction to Trigonometry Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $${cos}^{2}0+{cos}^{2}10+{cos}^{2}20+{cos}^{2}30+{cos}^{2}40+{cos}^{2}50+{cos}^{2}60+{cos}^{2}70+{cos}^{2}80+{cos}^{2}90=$$
    Solution

  • Question 2
    1 / -0
    The value of $$\cos{\cfrac{\pi}{10}}\cos{\cfrac{2\pi}{10}}\cos{\cfrac{4\pi}{10}}\cos{\cfrac{8\pi}{10}}\cos{\cfrac{16\pi}{10}}$$ is:
    Solution
    $$\cos\left({\cfrac{\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$ 

    Multiplying numerators and denominator by $$2\sin\left(\pi/10\right)$$

    $$\dfrac{1}{2\sin(\pi/10)}\times 2\sin\left({\cfrac{\pi}{10}}\right)\cos\left({\cfrac{\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left(\dfrac{16\pi}{10}\right)$$ 

    $$\dfrac{1}{2\sin(\pi/10)}\sin\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$ 

    Multiplying numerators and denominator by $$2$$, we get

    $$=\dfrac{1}{4\sin(\pi/10)}\times 2\sin\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$ 

    $$=\dfrac{1}{4\sin(\pi/10)}\times \sin\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{4\pi}{10}}\right)\cos\left({\cfrac{8\pi}{10}}\right)\cos\left({\cfrac{16\pi}{10}}\right)$$ 

    $$[As\, ,2\sin\left({\cfrac{2\pi}{10}}\right)\cos\left({\cfrac{2\pi}{10}}\right)=\sin\left({\cfrac{4\pi}{10}}\right)]$$ 

    $$=\dfrac{1}{32\sin(\pi/10)} \sin\left( \dfrac{32\pi}{10}\right)$$

    $$=\dfrac{\sin(3\pi+\dfrac{2\pi}{10})}{32\sin(\pi/10)}$$

    $$=\dfrac{-\sin(2\pi/10)}{32\sin(\pi/10)}$$         $$[As,\sin(3\pi+\theta)=-\sin\theta]$$

    $$\dfrac{-2\sin(\pi/10)\cos(\pi/10)}{32\sin(\pi/10)}$$  [As, $$\sin(2\pi/10)=2\sin(\pi/10)\cos(\pi/10)$$]

    $$=-\dfrac{-1}{16}\cos(\pi/10)$$
  • Question 3
    1 / -0
    Evaluate: $$\dfrac{{\sin}^{4}{\theta}-{\cos}^{4}{\theta}}{{\sin}^{2}{\theta}-{\cos}^{2}{\theta}}$$
    Solution
    $$\dfrac{{\sin}^{4}{\theta}-{\cos}^{4}{\theta}}{{\sin}^{2}{\theta}-{\cos}^{2}{\theta}}$$

    $$=\dfrac{\left({\sin}^{2}{\theta}-{\cos}^{2}{\theta}\right)\left({\sin}^{2}{\theta}+{\cos}^{2}{\theta}\right)}{{\sin}^{2}{\theta}-{\cos}^{2}{\theta}}$$

    $$={\sin}^{2}{\theta}+{\cos}^{2}{\theta}=1$$
  • Question 4
    1 / -0
    If $$\sin \theta = \cos \theta$$, then $$\theta = ?$$
    Solution
    $$\sin\theta =\cos \theta$$
     
    $$\Rightarrow \dfrac {\sin\theta}{\cos\theta}=1$$

    $$\Rightarrow \tan\theta=1$$

    $$\Rightarrow \theta=\tan^{-1}1$$

    $$\therefore \theta= 45^{\circ}$$
  • Question 5
    1 / -0
    $$\sin { 2A } =2\sin { A } $$ is true then A = _____
    Solution
    $$\sin{2A}=2\sin{A}$$
    $$\Rightarrow 2\sin{A}\cos{A}=2\sin{A}$$
    $$\Rightarrow 2\sin{A}\left(\cos{A}-1\right)=0$$
    $$\Rightarrow \sin{A}=0,\cos{A}-1=0$$
    $$\Rightarrow \sin{A}=0,\cos{A}=1$$
    $$\sin{A}=0\Rightarrow A=0,\pi,2\pi$$
    $$\cos{A}=1\Rightarrow A=0,2\pi$$
    $$\therefore A=\left\{0,\pi,2\pi\right\}\cap\left\{0,2\pi\right\}$$
    $$=\left\{0,2\pi\right\}$$
    Hence $$A=0$$

  • Question 6
    1 / -0
    $$\cot{1^0}\cot{2^0}\cot{3^0}\cot{4^0}...\cot{89^0}$$.
    Solution
    $$\cot{1^0}\cot{2^0}\cot{3^0}\cot{4^0}...\cot{89^0}$$

    $$=\cot{\left(90^0-89^0\right)}\cot{\left(90^0-88^0\right)}\cot{\left(90^0-87^0\right)}\cot{\left(90^0-86^0\right)}...\cot{45^0}.....\cot{86^0}\cot{87^0}\cot{88^0}\cot{89^0}$$

    There are $$\dfrac{89}{2}=44$$ terms $$+1$$ term
    That $$1$$ term is the middle term$$=\cot{45^0}=1$$
    and other terms will form the reciprocals 

    $$=\tan{89^0}\tan{88^0}\tan{87^0}\tan{86^0}...\cot{45^0}.....\cot{86^0}\cot{87^0}\cot{88^0}\cot{89^0}$$

    $$=\left(\tan{89^0}\cot{89^0}\right)\times \left(\tan{88^0}\cot{88^0}\right)\times \left(\tan{87^0}\cot{87^0}\right)\times \left(\tan{86^0}\cot{86^0}\right)\times ...\tan{45^0}$$ by re-arranging

    $$=1\times 1\times 1\times 1...1=1$$
  • Question 7
    1 / -0
    Choose the correct alternative:
    $$\ cosec \theta = \dfrac { 1 } { \dots \ldots }$$
    Solution
    By using trigonometric formula,
    $$cosec{\theta}$$ $$=1/sin {\theta}$$
  • Question 8
    1 / -0
    If $$\sin A+\cos A= {\sqrt2}$$ and $$\tan A+\cot A=2$$, then the value of $$\sec A\cdot \csc A$$ is equal to 
  • Question 9
    1 / -0
    If $$\displaystyle  \tan \theta + \cot \theta = 2$$, then $$\displaystyle  \sin \theta = $$?
    Solution
    $$\displaystyle  \tan \theta + \cot \theta = 2 \Rightarrow \tan \theta + \frac{1}{\tan \theta} = 2$$
    $$\displaystyle \Rightarrow \tan^2 \theta + 1 = 2 \tan \theta \Rightarrow 1 + \tan^2 \theta - 2\tan \theta = 0$$
    $$\displaystyle \Rightarrow ( 1 - \tan \theta )^2 = 0 \Rightarrow 1 - \tan \theta = 0 \Rightarrow \tan \theta = 1 \Rightarrow \theta = \frac{\pi}{4}$$.
    $$\displaystyle \therefore \ \ \  \sin \theta  = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
  • Question 10
    1 / -0
    Consider the following statements : 
    1. $$\cos\theta+\sec\theta$$ can never be equal to $$1.5$$
    2. $$\tan\theta+\cot\theta$$ can never be less than to $$2$$
    Which of the above statements is/are correct ?
    Solution
    $$\cos\theta=\dfrac{1}{\sec\theta}$$
     
    $$\tan\theta=\dfrac{1}{cot\theta}$$


    $$\Rightarrow A.M\ge G.M$$
    $$\Rightarrow x+\dfrac{1}{x}\ge 2, x>0$$
    From above inequality, we can write $$ x+\dfrac{1}{x}\le -2, x<0$$

    So $$\tan\theta+\dfrac{1}{\tan\theta}\ge 2$$ (when $$\tan \theta > 0$$)
    and $$\cos\theta+\dfrac{1}{\cos\theta}\ge 2$$ (when $$\cos \theta > 0$$)

    Similarly  $$\tan\theta+\dfrac{1}{\tan\theta}\le -2$$ (when $$\tan \theta < 0$$)
    and $$\cos\theta+\dfrac{1}{\cos\theta}\le -2$$ (when $$\cos \theta < 0$$)

    Hence $$\cos \theta +\sec \theta $$ can never be $$1.5$$.

    But $$\tan \theta + \cot \theta $$ will always be less than $$2$$ when they are negative.

    Hence only (1) is correct.



Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now