Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    If $$ \displaystyle \cos^2 \theta + sec^2 \theta = p$$, then

  • Question 2
    1 / -0

    Given that $$ sin \, \alpha = \dfrac{1}{2} , cos \, \beta = \dfrac{1}{2} $$ , then value of $$ ( \alpha + \beta) $$ is 

  • Question 3
    1 / -0

    $$2 \tan 45^{\circ} + \cos 45^{\circ} - \sin 45 ^{\circ} =? $$

  • Question 4
    1 / -0

    Choose the correct alternative answer for the following question.
    $$cosec \ 45^\circ= ?$$

  • Question 5
    1 / -0

    If $$\theta =30^o$$, then $$\dfrac{1-\sin^22\theta}{\cos 2\theta}$$ is

  • Question 6
    1 / -0

    If $$ \sqrt{3} \cos A = \sin A $$, then the value of $$ \cot A $$ is:

  • Question 7
    1 / -0

    $$a \sec \theta+b\tan\theta=1, a^{2}\sec^{2}\theta-b^{2}\tan^{2}\theta=5$$
    Then $$ a^{2}(b^{2}+4)=$$

  • Question 8
    1 / -0


    If $$a \sin^{2}x+b\cos^{2}x=c, b\sin^{2}y+a\cos^{2}y=d$$ and $$a \tan x=b\tan y,$$ then $$\displaystyle \frac{a^{2}}{b^{2}}$$ equals to

  • Question 9
    1 / -0

    $$\cot^{2}\alpha=1+\mathrm{a}^{2}$$ then $$\text{cosec}\,\alpha+\cot^{3}\alpha\sec\alpha=$$?

  • Question 10
    1 / -0


    $$\displaystyle {x}=\frac{\sin^{3}{p}}{\cos^{2}{p}}, \displaystyle {y}=\frac{\cos^{3}{p}}{\sin^{2}{p}}$$ and $$\sin p$$ $$+$$ $$\cos p $$ $$= \dfrac 12$$ then $${x}+{y}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now