Self Studies

Introduction to Trigonometry Test - 68

Result Self Studies

Introduction to Trigonometry Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given $$a = \sec^{2} \alpha ,b=\mathrm{cosec}^{2} \alpha , and ,  c=\dfrac{1}{1-\sin^{2}\alpha \cos^{2}\alpha }.$$ The value of $$bc + ca - ab$$ is
    Solution
    We know that,
    $${ sin }^{ 2 }\theta +{ cos }^{ 2 }\theta =1$$

    Given that, $$a = \sec^{2} \alpha ,b=\mathrm{cosec}^{2} \alpha , $$ 

    $$\Rightarrow$$ $$\cfrac { 1 }{ a } ={ cos }^{ 2 }\alpha ,\quad \cfrac { 1 }{ b } ={ sin }^{ 2 }\alpha $$

    $$\dfrac{1}{a}+\dfrac{1}{b}=1$$

     and $$c =\dfrac{1}{1-\dfrac{1}{ab}}=\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{ab}}=\dfrac{ab}{a+b-1}$$ 

    $$\therefore ac + bc- c = ab$$,

    Thus,
    $$ac + bc - ab = c$$

    Hence, option 'C' is correct.
  • Question 2
    1 / -0
    lf $$\sin\alpha=a\sin\beta$$ and $$\cos\alpha=b\cos\beta$$ , then $$\tan\alpha$$=
    Solution
    Given that $$\sin\alpha=a\sin\beta$$ and $$\cos\alpha=b\cos\beta$$
    $$\Rightarrow \sin^2\alpha=a^2\left(1-\cos^2\beta\right)$$
    $$\Rightarrow \sin^2\alpha=a^2\left(1-\displaystyle\frac{1}{b^2}\cos^2\alpha\right)$$
    dividing both sides with $$\cos^2\alpha$$ gives
    $$\tan^2\alpha=a^2\left(1+\tan^2\alpha\right)-\displaystyle\frac{a^2}{b^2}$$
    $$\Rightarrow \tan^2\alpha(1-a^2)=\displaystyle\frac{a^2}{b^2}(b^2-1)$$
    $$\therefore \tan\alpha=\pm\sqrt{\displaystyle \frac{a^{2}(1-b^{2})}{b^{2}(a^{2}-1)}}$$
    Hence, option A.

  • Question 3
    1 / -0
     If $$\sin\mathrm{x}+\sin^{2}\mathrm{x}=1$$, then $$\cos^{12}\mathrm{x}+3\cos^{10}\mathrm{x}+3\cos^{8}\mathrm{x}+\cos^{6}\mathrm{x}+2\cos^{4}\mathrm{x}+\cos^{2}\mathrm{x}-2$$ is equal to 
    Solution
    Given that, 
    $$\sin x + \sin^{2}x = 1$$             

    To find out,
    The value of the expression: $$\cos^{12} x+3\cos^{10}x+3\cos^{8}x+\cos^{6}x+2\cos^{4}x+\cos^{2}x-2$$

    $$\sin x + \sin^{2}x = 1$$             

    $$\Rightarrow \sin x = 1 - \sin^{2}x$$

    $$\Rightarrow \sin x = \cos^{2}x\quad \quad [\because \ \sin^2 x+\cos^2 x=1]$$

    $$\cos^{12} x+3\cos^{10}x+3\cos^{8}x+\cos^{6}x+2\cos^{4}x+\cos^{2}x-2$$

    We can rewrite it as:
    $$({\cos^2x})^6+3({\cos^2x})^5+3({\cos^2x})^4+({\cos^2x})^3+2({\cos^2x})^2+{\cos^2x}-2$$

    Now, substituting  $$\cos^{2}x = \sin x$$ in the above expression, we get:

    $$  \sin^{6}x + 3\sin^{5}x + 3\sin^{4}x + \sin^{3}x + 2\sin^{2}x + \sin x -2$$

    $$\Rightarrow \left[(\sin^2x)^3+(\sin x)^3+3\sin x \sin^2 x(\sin^2 x+\sin x)\right]-2(1-\sin^2 x)+\sin x$$

    We know that, $$a^3+b^3+3ab(a+b)=(a+b)^3$$

    On applying the identity, the expression becomes,
    $$(\sin^2 x+\sin x)^3-2(1-\sin^2 x)+\sin x$$

    Now, $$\sin x + \sin^{2}x = 1$$ and $$1-\sin^2 x=\sin x$$

    Substituting the above values, the expression becomes,
    $$(1)^3-2(\sin x)+\sin x$$

    $$\Rightarrow 1-2\sin x+\sin x$$

    $$\Rightarrow 1-\sin x$$

    But, $$1-\sin x=\sin^2 x\quad \quad [\because \ \sin x + \sin^{2}x = 1]$$

    Hence, the expression reduces to,
    $$\sin^2 x$$

    $$\therefore \ \cos^{12} x+3\cos^{10}x+3\cos^{8}x+\cos^{6}x+2\cos^{4}x+\cos^{2}x-2=\sin^2 x$$

    Hence, option C is correct.
  • Question 4
    1 / -0
    If $$\sin {x}+\sin^{2}{x}+\sin^{3}{x}=1 ,\ \ then \ \  \cos^{6}{x}-4\cos^{4}{x}
    +8\cos^{2}{x}$$ is equal to
    Solution

    $$\sin x + \sin ^{2}x + \sin ^{3}x = 1$$
    $$\sin x(1 + \sin ^{2}x) = 1 - \sin ^{2}x$$
    $$\sin x(2 - \cos ^{2}x) = \cos ^{2}x$$
    we square both the sides
    $$\sin ^{2}x(2-\cos ^{2}x)^{2} = \cos ^{4}x$$
    $$(1-\cos ^{2}x)(2-\cos ^{2}x)^{2} = \cos ^{4}x$$
    $$(1-\cos^2x)(4-4\cos^2 x+\cos^4x)=\cos ^4 x$$

    $$8\cos^2x+\cos^6x-4\cos^4x=4$$

  • Question 5
    1 / -0

    If $$\sin\alpha+\cos\alpha=m, m^{2}\leq 2$$, then $$\sin^{6}\alpha+\cos^{6}\alpha=$$
    Solution
    $$\sin\alpha + \cos\alpha = m$$
    squaring both sides
    $$\sin^{2}\alpha + \cos^{2}\alpha + 2\sin\alpha \cos\alpha = m^{2}$$

    $$\sin\alpha \cos\alpha = \dfrac{m^{2} - 1}{2}$$
    Now,
    $$ sin^{6}\alpha + cos^{6}\alpha = (sin^{2}\alpha + cos^{2}\alpha)(\sin^{4}\alpha + cos^{4}\alpha - sin^{2}\alpha cos^{2}\alpha)$$

    $$ = (sin^{2}\alpha + \cos^{2}\alpha)^{2} - 3 \sin^{2}\alpha \cos^{2}\alpha$$

    $$ = 1 - 3\sin^{2}\alpha \cos^{2}\alpha$$

    Substitute the value of  $$\sin\alpha \cos\alpha$$

    $$=1-3\dfrac{(m^2-1)^2}{4}$$
  • Question 6
    1 / -0
    If $$a \sin^{2}\theta+b\cos^{2}\theta=a\cos^{2}\phi+b\sin^{2}\phi=1$$ and $$a \tan\theta=b\tan\phi$$, then choose the correct option.
    Solution
    Given: $$a\sin ^2\theta+b\cos ^2\theta=1$$ .... $$(i)$$ and $$a\cos ^2\phi+b\sin ^2\phi=1$$ .... $$(ii)$$
    Dividing equation $$(i)$$ by $$\cos ^2\theta$$, we get

    $$a\tan ^2\theta+b=\sec ^2\theta$$
    $$\Rightarrow a\tan ^2\theta+b=1+\tan ^2\theta$$
    $$\Rightarrow \tan ^2\theta=\dfrac{b-1}{1-a}=\tan \theta=\sqrt{\dfrac{b-1}{1-a}}$$

    Similarly in the equation $$(ii)$$, on dividing by $$\cos ^2\phi$$ we get,
    $$b\tan ^2\phi+a=\sec ^2\phi$$
    $$\Rightarrow b\tan ^2\phi+a=1+\tan ^2\phi$$
    $$\Rightarrow \tan ^2\phi=\dfrac{1-a}{b-1}=\tan \phi=\sqrt{\dfrac{1-a}{b-1}}$$

    Now, it is given that 
    $$a\tan \theta=b\tan \phi$$
    $$\Rightarrow a\sqrt{\dfrac{b-1}{1-a}}=b\sqrt{\dfrac{1-a}{b-1}}$$
    $$\Rightarrow \dfrac{a}{b}=\dfrac{1-a}{b-1}$$
    $$\Rightarrow ab-a=b-ab$$
    $$\Rightarrow a+b=2ab$$
  • Question 7
    1 / -0
    The value of the expression $$(\tan1^{0} \tan2^{0} \tan 3^{0}...\tan89^{0})$$ is equal to
    Solution
    Given:
    $$A = \tan1 ^o\cdot\tan2^o\cdot\tan3^o\cdots\cdots\tan89^o$$
    We know that, the value of $$\tan89^o=\tan(90^o-1^o)=\cot 1^o$$
    In the same way,
    $$\tan  88^o=\cot  2^o$$
    $$\tan  87^o=\cot  3^o$$
    And .... so on, up  to  $$\tan  46^o=\cot  44^o$$
    And the middle one is $$\tan 45^o=1$$
    So, 
    $$A = \tan1^o\cdot\tan2^o\cdot\tan3^o\cdots\cdots\tan{44}^o\cdot\tan45^o\cdot\cot44^o\cdots\cdots\cot 2^o\cdot\cdot\cot1^o$$
    $$\tan$$ and $$\cot$$ cancels out each other, then $$\tan45^o = 1$$ is remaining 
    $$\therefore$$ The value of the expression $$V$$ is $$1$$.

    Hence, option B.
  • Question 8
    1 / -0
    If $$b > 1, \sin t > 0, \cos t > 0$$ and $$\displaystyle \log_b(\sin t) = x$$, then $$\displaystyle \log_b(\cos t)$$ is equal to
    Solution
    Hence 
    $$sint=b^{x}$$
    Or 
    $$sin^{2}t=b^{2x}$$
    $$1-cos^{2}t=b^{2x}$$
    $$cost=\sqrt{1-b^{2x}}$$
    Or 
    $$log_{b}(cost)=\dfrac{1}{2}log_{b}(1-b^{2x})$$.
  • Question 9
    1 / -0
    If $$\cos9 \alpha= \sin \alpha$$ and $$9 \alpha < 90^{0}$$, then the value of $$\tan5 \alpha$$ is
    Solution
    $$\cos(9\alpha)=\sin(\alpha)$$
    $$\sin(90^0-9\alpha)=\sin(\alpha)$$

    For $$0<\alpha<90^0$$
    $$90^0-9\alpha=\alpha$$
    $$90^0=10\alpha$$
    $$\alpha=9^0$$
    Now,
    $$\tan5\alpha$$
    $$=\tan(5)(9^0)$$
    $$=\tan45^0 = 1$$

    Hence, option C.
  • Question 10
    1 / -0
    In a right angle triangle $$\triangle ABC,\,\sin ^{ 2 }{ A } +\sin ^{ 2 }{ B } +\sin ^{ 2 }{ C } $$ is
    Solution
    Let $$C={90}^{0}$$
    Then, 
    $$\sin ^{ 2 }{ A } +\sin ^{ 2 }{ B } +\sin ^{ 2 }{ C } =\sin ^{ 2 }{ A } +\sin ^{ 2 }{ B } +1$$
    $$\displaystyle =\sin ^{ 2 }{ A } +\sin ^{ 2 }{ \left( \frac { \pi  }{ 2 } -A \right) +1 } \\ =\sin ^{ 2 }{ A } +\cos ^{ 2 }{ A } +1\\=1+1 \\=2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now