Given that,
$$\sin x + \sin^{2}x = 1$$
To find out,
The value of the expression: $$\cos^{12} x+3\cos^{10}x+3\cos^{8}x+\cos^{6}x+2\cos^{4}x+\cos^{2}x-2$$
$$\sin x + \sin^{2}x = 1$$
$$\Rightarrow \sin x = 1 - \sin^{2}x$$
$$\Rightarrow \sin x = \cos^{2}x\quad \quad [\because \ \sin^2 x+\cos^2 x=1]$$
$$\cos^{12} x+3\cos^{10}x+3\cos^{8}x+\cos^{6}x+2\cos^{4}x+\cos^{2}x-2$$
We can rewrite it as:
$$({\cos^2x})^6+3({\cos^2x})^5+3({\cos^2x})^4+({\cos^2x})^3+2({\cos^2x})^2+{\cos^2x}-2$$
Now, substituting $$\cos^{2}x = \sin x$$ in the above expression, we get:
$$ \sin^{6}x + 3\sin^{5}x + 3\sin^{4}x + \sin^{3}x + 2\sin^{2}x + \sin x -2$$
$$\Rightarrow \left[(\sin^2x)^3+(\sin x)^3+3\sin x \sin^2 x(\sin^2 x+\sin x)\right]-2(1-\sin^2 x)+\sin x$$
We know that, $$a^3+b^3+3ab(a+b)=(a+b)^3$$
On applying the identity, the expression becomes,
$$(\sin^2 x+\sin x)^3-2(1-\sin^2 x)+\sin x$$
Now, $$\sin x + \sin^{2}x = 1$$ and $$1-\sin^2 x=\sin x$$
Substituting the above values, the expression becomes,
$$(1)^3-2(\sin x)+\sin x$$
$$\Rightarrow 1-2\sin x+\sin x$$
$$\Rightarrow 1-\sin x$$
But, $$1-\sin x=\sin^2 x\quad \quad [\because \ \sin x + \sin^{2}x = 1]$$
Hence, the expression reduces to,
$$\sin^2 x$$
$$\therefore \ \cos^{12} x+3\cos^{10}x+3\cos^{8}x+\cos^{6}x+2\cos^{4}x+\cos^{2}x-2=\sin^2 x$$
Hence, option C is correct.