Self Studies

Introduction to Trigonometry Test - 69

Result Self Studies

Introduction to Trigonometry Test - 69
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \frac{\sin x}{a}= \frac{\cos x}{b}= \frac{\tan x}{c}= k,$$ then $$\displaystyle bc+\frac{1}{ck}+\frac{ak}{1+bk} $$ is equal to


    Solution
    $$bc+\cfrac { 1 }{ ck } +\cfrac { ak }{ 1+bk } $$
    Substituting values from
    $$\cfrac { sinx }{ a } =\cfrac { cosx }{ b } =\cfrac { tanx }{ c } =k$$
    we get
    $$\cfrac { cosx }{ k } .\cfrac { tanx }{ k } +\cfrac { k }{ tanxk } +\cfrac { \cfrac { sinx }{ k } k }{ 1+\cfrac { cosx }{ k } k } \\ =\cfrac { sinx }{ { k }^{ 2 } } +\cfrac { 1 }{ tanx } +\cfrac { sinx }{ 1+cosx } \\ =\cfrac { sinx }{ { k }^{ 2 } } +\cfrac { cosx }{ sinx } +\cfrac { sinx }{ 1+cosx } \\ =\cfrac { sinx }{ { k }^{ 2 } } +\cfrac { 1 }{ sinx } =\cfrac { ak }{ { k }^{ 2 } } +\cfrac { 1 }{ ak } \\ =\cfrac { 1 }{ k } \left( a+\cfrac { 1 }{ a }  \right) $$
  • Question 2
    1 / -0
    If $$\displaystyle \sin \theta+\sin ^{2} \theta +\sin ^{3}\theta= 1$$ then the value of $$\displaystyle \cos ^{6}\theta-4\cos ^{4}\theta+8\cos ^{2}\theta$$ equals
    Solution
    Given $$sin \theta+sin^{2} {\theta}+sin^{3}{\theta}=1$$

    $$sin \theta+sin^{3}{\theta}=1-sin^{2} {\theta}$$

    $$sin \theta \times (1+sin^{2} {\theta})=cos^{2}{\theta} $$

    Squaring on both sides

    $$\Rightarrow sin^{2}{\theta} \times (1+sin^{2} {\theta})^{2}=cos^{4}{\theta} $$

    $$\Rightarrow (1-cos^{2}{\theta}) \times (1+1-cos^{2} {\theta})^{2}=cos^{4}{\theta} $$

    $$\Rightarrow (1-cos^{2}{\theta}) \times (2-cos^{2} {\theta})^{2}=cos^{4}{\theta} $$

    $$\Rightarrow (1-cos^{2}{\theta}) \times (4+cos^{4}{\theta}-4cos^{2} {\theta})=cos^{4}{\theta} $$

    $$\Rightarrow 4+cos^{4}{\theta} -4 cos^{2}{\theta} -4 cos^{2}{\theta}-cos^{6}{\theta}+4cos^{4}{\theta}=cos^{4}{\theta} $$

    $$\Rightarrow -cos^{6}{\theta}+4cos^{4}{\theta}-8cos^{2}{\theta}+4=0$$

    $$\Rightarrow cos^{6}{\theta}-4cos^{4}{\theta}+8cos^{2}{\theta}=4$$

  • Question 3
    1 / -0
    If $$\displaystyle \sin x+ \sin^{2}x= 1,$$ then the value of $$\displaystyle \cos ^{12}x +3\cos ^{10}x+3\cos ^{8}x+\cos ^{6}x-2$$ is equal to
    Solution
    $$sinx+{ sin }^{ 2 }x=1\Rightarrow sinx=1-{ sin }^{ 2 }x\\ \Rightarrow sinx={ cos }^{ 2 }x$$   ...(1)
    $${ cos }^{ 12 }x+3{ cos }^{ 10 }x+3{ cos }^{ 8 }x+{ cos }^{ 6 }x-2$$
    Substituting values from (1), we get
    $${ sin }^{ 6 }x+3{ sin }^{ 5 }x+3{ sin }^{ 4 }x+{ sin }^{ 3 }x-2\\ ={ \left( { sin }^{ 2 }x+sinx \right)  }^{ 3 }-2=1-2=-1$$
  • Question 4
    1 / -0
    Use the information given to find the length of $$AB$$ in cm

    Solution
    In $$\triangle APQ$$,
    $$AQ = 10$$, $$\angle APQ = 30^{\circ}$$
    $$\tan \angle APQ = \dfrac{P}{B} = \dfrac{AQ}{AP}$$
    $$\dfrac{1}{\sqrt{3}} = \dfrac{AQ}{AP}$$
    $$AP = AQ \sqrt{3}$$
    $$AP = 10 \sqrt{3}$$
    $$AP = 17.32$$

    In $$\triangle PBR$$,
    $$RB = 8$$, $$\angle PRB = 45^{\circ}$$
    $$\tan \angle PRB = \dfrac{P}{B} = \dfrac{PB}{RB}$$
    $$1 = \dfrac{PB}{8}$$
    $$PB = 8$$

    Now, $$AB = AP + PB$$
    $$AB = 17.32 + 8 $$
    $$AB = 25.32$$ cm
  • Question 5
    1 / -0
    If $$\displaystyle \cos A= \frac{1}{2}$$ and $$\displaystyle \sin B= \frac{1}{\sqrt{2}}$$ , find the value of $$\displaystyle \frac{\tan A\, -\, \tan B}{1\, +\, \tan A\tan B}$$

    Solution
    $$\cos A = \dfrac{1}{2}$$
    $$\cos A = \cos 60^0$$
    $$A = 60^{\circ}$$

    $$\sin B = \dfrac{1}{\sqrt{2}}$$
    $$\sin B = \sin 45^0$$
    $$B = 45^{\circ}$$

    Now, $$\displaystyle \frac{\tan A\, -\, \tan B}{1\, +\, \tan A\tan B}$$

    = $$\displaystyle \frac{\tan 60^0\, -\, \tan 45^0}{1\, +\, \tan 60^0\tan 45^0}$$

    = $$\displaystyle \frac{\sqrt{3}\, -\, 1}{1\, +\, (\sqrt{3})(1)}$$

    = $$\displaystyle \frac{(\sqrt{3}\, -\, 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)}$$

    = $$\displaystyle \frac{3 + 1 - 2\sqrt{3}}{3 - 1}$$

    = $$\displaystyle 2 - \sqrt{3}$$
  • Question 6
    1 / -0
    If $$\displaystyle \frac{\cos ^{4}\theta} {\theta_{1}}+\frac{\sin ^{4}\theta} {\theta_{2}}= \frac{1}{\theta_{1}+\theta_{2}}$$ ,then $$\displaystyle \frac{\theta_{2}+\theta_{1}}{\theta_{1}}$$ equals
    Solution
    $$\displaystyle \dfrac { \cos ^{ 4 }{ \theta  }  }{ { \theta  }_{ 1 } } +\dfrac { \sin ^{ 4 }{ \theta  }  }{ { \theta  }_{ 2 } } =\dfrac { 1 }{ { \theta  }_{ 1 }+{ \theta  }_{ 2 } } \\ \Rightarrow \dfrac { \cos ^{ 4 }{ \theta  }  }{ { \theta  }_{ 1 } } +\dfrac { \sin ^{ 4 }{ \theta  }  }{ { \theta  }_{ 2 } } =\dfrac { { \left( \cos ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \theta  }  \right)  }^{ 2 } }{ { \theta  }_{ 1 }+{ \theta  }_{ 2 } } \\ \Rightarrow \dfrac { \cos ^{ 4 }{ \theta  }  }{ { \theta  }_{ 1 } } +\dfrac { \sin ^{ 4 }{ \theta  }  }{ { \theta  }_{ 2 } } =\dfrac { \cos ^{ 4 }{ \theta  } +\sin ^{ 4 }{ \theta  } +2\cos ^{ 2 }{ \theta  } \sin ^{ 2 }{ \theta  }  }{ { \theta  }_{ 1 }+{ \theta  }_{ 2 } } \\ \Rightarrow \cos ^{ 4 }{ \theta  } \left( \dfrac { 1 }{ { \theta  }_{ 1 } } -\dfrac { 1 }{ { \theta  }_{ 1 }+{ \theta  }_{ 2 } }  \right) +\sin ^{ 4 }{ \theta  } \left( \dfrac { 1 }{ { \theta  }_{ 2 } } -\dfrac { 1 }{ { \theta  }_{ 1 }+{ \theta  }_{ 2 } }  \right) =\dfrac { 2\cos ^{ 2 }{ \theta  } \sin ^{ 2 }{ \theta  }  }{ { \theta  }_{ 1 }+{ \theta  }_{ 2 } } \\ \Rightarrow \dfrac { { \theta  }_{ 2 } }{ { \theta  }_{ 1 } } \cos ^{ 4 }{ \theta  } +\dfrac { { \theta  }_{ 1 } }{ { \theta  }_{ 2 } } \sin ^{ 4 }{ \theta  } -2\cos ^{ 2 }{ \theta  } \sin ^{ 2 }{ \theta  } =0\\ \Rightarrow { { \theta  }_{ 2 } }^{ 2 }\cos ^{ 4 }{ \theta  } +{ { \theta  }_{ 1 } }^{ 2 }\sin ^{ 4 }{ \theta  } -2{ \theta  }_{ 1 }{ \theta  }_{ 2 }\cos ^{ 2 }{ \theta  } \sin ^{ 2 }{ \theta  } =0\\ \Rightarrow { \left( { \theta  }_{ 2 }\cos ^{ 2 }{ \theta  } -{ \theta  }_{ 1 }\sin ^{ 2 }{ \theta  }  \right)  }^{ 2 }=0\\ \Rightarrow \tan ^{ 2 }{ \theta  } =\dfrac { { \theta  }_{ 2 } }{ { \theta  }_{ 1 } } $$

    $$\dfrac { { \theta  }_{ 1 }+{ \theta  }_{ 2 } }{ { \theta  }_{ 1 } } =\dfrac { { \theta  }_{ 1 }+{ \theta  }_{ 1 }\tan ^{ 2 }{ \theta  }  }{ { \theta  }_{ 1 } } =\sec ^{ 2 }{ \theta  } $$

    Ans: B
  • Question 7
    1 / -0
    The value of the expression $$\displaystyle \frac{\cos ^{2}\alpha \sin ^{2}\theta +\sin ^{2}\alpha }{\tan ^{2}\theta+\sin ^{2}\alpha }$$ equals 
    Solution
    $$\displaystyle a=\frac { \cos ^{ 2 }{ \alpha  } \sin ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \alpha  }  }{ \tan ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \alpha  }  } $$

    $$\displaystyle \Rightarrow a=\frac { \cos ^{ 2 }{ \theta  } \left[ \sin ^{ 2 }{ \theta  } \left( 1-\sin ^{ 2 }{ \alpha  }  \right) +\sin ^{ 2 }{ \alpha  }  \right]  }{ \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } \sin ^{ 2 }{ \alpha  }  } $$

    $$\displaystyle \Rightarrow a=\frac { \cos ^{ 2 }{ \theta  } \left[ \sin ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \alpha  } \left( 1-\sin ^{ 2 }{ \theta  }  \right)  \right]  }{ \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } \sin ^{ 2 }{ \alpha  }  } $$

    $$\displaystyle \Rightarrow a=\frac { \cos ^{ 2 }{ \theta  } \left[ \sin ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \alpha  } \cos ^{ 2 }{ \theta  }  \right]  }{ \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } \sin ^{ 2 }{ \alpha  }  } $$

    $$\therefore \quad a=\cos ^{ 2 }{ \theta  }  $$

    Ans: D
  • Question 8
    1 / -0
    If $$\displaystyle\frac{\cos^{4}x }{\theta _{1}}+\displaystyle\frac{\sin^{4}x}{\theta _{2}}=\frac{1}{\theta _{1}+\theta _{2}},$$ then $$\displaystyle\frac{\theta _{2}}{\theta _{1}}$$ equals
    Solution
    $$\cfrac { { cos }^{ 4 }x }{ { \theta  }_{ 1 } } +\cfrac { { sin }^{ 4 }x }{ { \theta  }_{ 2 } } =\cfrac { 1 }{ { \theta  }_{ 1 }+{ \theta  }_{ 2 } } \\ \Rightarrow \left( { \theta  }_{ 1 }+{ \theta  }_{ 2 } \right) \left( \cfrac { { cos }^{ 4 }x }{ { \theta  }_{ 1 } } +\cfrac { { sin }^{ 4 }x }{ { \theta  }_{ 2 } }  \right) =1\\ \Rightarrow \left( { \theta  }_{ 1 }+{ \theta  }_{ 2 } \right) \left( \cfrac { { cos }^{ 4 }x }{ { \theta  }_{ 1 } } +\cfrac { { sin }^{ 4 }x }{ { \theta  }_{ 2 } }  \right) ={ \left( { sin }^{ 2 }x+{ cos }^{ 2 }x \right)  }^{ 2 }\\ \Rightarrow \left( { \theta  }_{ 1 }+{ \theta  }_{ 2 } \right) \left( \cfrac { { cos }^{ 4 }x }{ { \theta  }_{ 1 } } +\cfrac { { sin }^{ 4 }x }{ { \theta  }_{ 2 } }  \right) ={ sin }^{ 4 }x+{ cos }^{ 4 }x+2{ sin }^{ 2 }x{ cos }^{ 2 }x\\ \Rightarrow \left( { \theta  }_{ 1 }+{ \theta  }_{ 2 } \right) { \theta  }_{ 2 }{ cos }^{ 4 }x+\left( { \theta  }_{ 1 }+{ \theta  }_{ 2 } \right) { \theta  }_{ 1 }{ sin }^{ 4 }x={ { \theta  }_{ 1 }{ \theta  }_{ 2 }sin }^{ 4 }x+{ { \theta  }_{ 1 }{ \theta  }_{ 2 }cos }^{ 4 }x+{ \theta  }_{ 1 }{ \theta  }_{ 2 }2{ sin }^{ 2 }x{ cos }^{ 2 }x\\ \Rightarrow { { \theta  }_{ 2 } }^{ 2 }{ cos }^{ 4 }x+{ { \theta  }_{ 1 } }^{ 2 }{ sin }^{ 4 }x-{ \theta  }_{ 1 }{ \theta  }_{ 2 }2{ sin }^{ 2 }x{ cos }^{ 2 }x=0\\ \Rightarrow \cfrac { { \theta  }_{ 2 } }{ { \theta  }_{ 1 } } { cos }^{ 4 }x+\cfrac { { \theta  }_{ 1 } }{ { \theta  }_{ 2 } } { sin }^{ 4 }x-2{ sin }^{ 2 }x{ cos }^{ 2 }x=0\\ \Rightarrow { \left( \sqrt { \cfrac { { \theta  }_{ 2 } }{ { \theta  }_{ 1 } } { cos }^{ 2 }x } -\sqrt { \cfrac { { \theta  }_{ 1 } }{ { \theta  }_{ 2 } } { sin }^{ 2 }x }  \right)  }^{ 2 }=0\\ \Rightarrow { tan }^{ 2 }x=\cfrac { { \theta  }_{ 2 } }{ { \theta  }_{ 1 } } $$
  • Question 9
    1 / -0
    $$\cfrac { \cos { \theta  }  }{ 1-\sin { \theta  }  } -\cfrac { \cos { \theta  }  }{ 1+\sin { \theta  }  } =2$$ is satisfied by which one of the following values of $$\theta$$?
  • Question 10
    1 / -0
    Evaluate :$$\displaystyle \frac{5\cos ^{2}60^{\circ}+4\sec ^{2}30^{\circ}-\tan ^{2}45^{\circ}}{\sin ^{2}30^{\circ}+\cos ^{2}30^{\circ}}$$
    Solution
    $$\displaystyle \frac{5\cos ^{2}60^{\circ}+4\sec ^{2}30^{\circ}-\tan ^{2}45^{\circ}}{\sin ^{2}30^{\circ}+\cos ^{2}30^{\circ}}$$

    = $$\displaystyle \dfrac{5(\dfrac{1}{2})^2 + 4(\dfrac{2}{\sqrt{3}})^2 - 1}{(\dfrac{1}{2})^2+ (\dfrac{\sqrt{3}}{2})^2}$$

    = $$\displaystyle \dfrac{\dfrac{5}{4} + \dfrac{16}{3} - 1}{\dfrac{1}{4} + \dfrac{3}{4}}$$ 

    = $$\displaystyle \dfrac{15 + 64 - 12}{12}$$ 

    = $$\displaystyle \dfrac{67}{12}$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now