Self Studies

Some Applications of Trigonometry test - 13

Result Self Studies

Some Applications of Trigonometry test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A pole $$15$$ m long rests against a vertical wall at an angle of $$\displaystyle 30^{\circ}$$ with the ground How high up the wall does the pole reach?
    Solution
    As shown in the fig. let $$AB$$ be the length of the pole.

    $$\displaystyle \sin 30^{\circ}=\frac{x}{15}$$

    Or

     $$x=15\displaystyle \sin 30^{\circ}\\=\frac{15}{2}\\=7.5$$m

  • Question 2
    1 / -0
    In the given figure given, $$\beta$$ is _____ 

    Solution
    Here, $$A$$ is an object below the level of the eye and $$O$$ is eye. 
    Also, $$OB$$ is a horizontal line through $$O$$.
    Thus $$\angle AOB = B$$ is called the angle of depression. 
  • Question 3
    1 / -0
    In the given figure, $$\alpha$$ is _____ 

    Solution
    The given object A is above the level of the eye O. Thus $$\alpha$$ is the angle of elevation. 
    So, option A is correct.
  • Question 4
    1 / -0
    the shadow cast by a tower is 30 m long when the elevation of sum is $$\displaystyle 30^{\circ}   $$ If the elevation of sum is $$\displaystyle 60^{\circ}   $$  then the length of the shadow is 
    Solution
    $$\displaystyle \tan 30^{\circ}=\frac{h}{30}$$ or $$\displaystyle \frac{1}{\sqrt{3}}=\frac{h}{30}$$
    $$\displaystyle \therefore h=\frac{30}{\sqrt{3}}$$
    $$\displaystyle \tan 60^{\circ}=\frac{30/\sqrt{3}}{x}$$
    or $$\displaystyle \sqrt{3}=\frac{30}{x\sqrt{3}}$$
    $$\displaystyle \therefore $$ x=10

  • Question 5
    1 / -0
    The angle of elevation of the top of a tower at a horizontal distance equal to the height of the tower from the base of the tower is 
    Solution
    Let the angle of elevation be $$\theta$$, from the same distance from pole as the length of the pole then
    $$\tan \theta = \dfrac{distance~ from \ pole}{length\ of\ pole}$$
    $$\tan \theta = 1$$
    $$\tan \theta = \tan 45$$
    $$\theta = 45^{\circ}$$
  • Question 6
    1 / -0
    The length of the shadow of a pole is $$\displaystyle \sqrt{3}   $$ times its height  The elevation of the sum must be 
    Solution
    $$\displaystyle \tan \theta =\frac{h}{\sqrt{3}h}=\frac{1}{\sqrt{3}}$$
    $$\displaystyle \therefore \theta =30^{\circ}$$

  • Question 7
    1 / -0
    From the point B a perpendicular BD is drawn on AC. If $$\cos 30^o=0.8$$, find the length of AD.

    Solution
    In $$ \displaystyle   \bigtriangleup ' S ABC and ABD , \angle A        $$ is common and $$ \displaystyle   \angle ABC =    \angle ADB    $$
    Hence $$ \displaystyle   \bigtriangleup ' ABC and       \bigtriangleup  ABD        $$  are equiangular 
    $$ \displaystyle  \therefore \frac{AD}{AB}= \frac{AB}{AC}     $$ OR 
    $$ \displaystyle  AD=\frac{AB^{2}}{AC}=\frac{AC^{2}-BC^{2}}{AC}     $$
    $$ \displaystyle  =AC\left [ 1-\left ( \frac{BC}{AC} \right )^{2} \right ]     $$
    $$ \displaystyle  =\frac{BC}{\cos 30^{\circ}}\left [ 1-\left ( \cos 30^{\circ} \right )^{2} \right ]     $$
    $$ \displaystyle  =\frac{100}{0.8}\left [ 1-\left ( 0.8 \right )^{2} \right ]     $$
    $$ \displaystyle  =\frac{100\times 10}{8}\left [ 1-\frac{64}{100} \right ]     $$
    $$ \displaystyle  =\frac{100\times 10}{8}\times \frac{36}{100}=45     $$

  • Question 8
    1 / -0
    In case of angle of elevation, the observer has to look _____ to view the object. 
    Solution
    In case of angle of elevation. The observer has to look up to view the object. 

  • Question 9
    1 / -0
    From a point P on a level ground, the angle of elevation of the top tower is $$30^{\circ}$$. If the tower is $$100\ m$$ high, the distance of point P from the foot of the tower is:
    Solution
    Let $$AB$$ be the tower.
    Then, $$\angle APB = 30^{\circ}$$ and $$AB = 100\ m$$.
    $$\dfrac {AB}{AP} = \tan 30^{\circ} = \dfrac {1}{\sqrt {3}}$$
    $$\Rightarrow AP = (AB \times \sqrt {3})m$$
    $$= 100\sqrt {3}m$$
    $$= (100\times 1.73)m$$
    $$= 173\ m$$.

  • Question 10
    1 / -0
    In angle of elevation the observer looks ____ to view the object whereas in angle of depression he looks ____ to view object. 
    Solution
    In angle of elevation the observer looks up to view the object whereas in angle of depression he looks down to view the object. 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now