Self Studies

Some Applications of Trigonometry test - 16

Result Self Studies

Some Applications of Trigonometry test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The upper part of a tree broken over by the wind makes an angle of $$60^{0}$$ with the ground and touches the ground at a distance of 50 metres from the foot.  The height of the tree in metres is 
    Solution
    We will consider that the tree is broken at A.
    So the total heigh of the tree will be $$AC + AB$$

    Let $$AC=L_1$$ and $$AB =L_2$$
    $$\Rightarrow$$Height of the tree $$= L_{1} + L_{2}$$
    In the $$\triangle ABC, \angle C = 90^\circ$$,

    $$\sin 60^\circ = \dfrac{AC}{AB}$$
    $$L_{2} \sin 60^{0} = L_{1}$$ .....(1)
    $$\tan 60^{0} = \displaystyle\frac{L_{1}}{50}$$
    $$\Rightarrow L_{1} = 50 \sqrt{3} m$$
    Substituting the value of $$L_1$$ in (1)
    $$L_2 \times \dfrac{\sqrt 3}{2} = 50\sqrt3$$
    $$\Rightarrow L_{2} = 100 m$$
    $$\Rightarrow h =L_{1}+L_{2}$$
    $$\Rightarrow h = 100+50 \sqrt{3}$$
             $$=186.6 m$$
    $$\therefore$$ Height of the tree = $$=186.6 m$$

  • Question 2
    1 / -0
    The angle of elevation of the top of a flagstaff when observed from a point at a distance $$60$$ meters from its foot is $$30^{0}$$. The height of the flagstaff (in meters) is: 
    Solution
    Let $$AB=h$$ be the height of the flagstaff and $$C$$ be the point at a distance of $$60m$$ from the foot.
    In $$\triangle ABC$$,

    $$\tan{30^0} = \dfrac{AB}{BC} = \dfrac{h}{60}$$

    $$\Rightarrow \dfrac1{\sqrt3} = \dfrac h{60}$$

    $$\Rightarrow h = \dfrac{60}{\sqrt3}$$

    $$\Rightarrow h = 20\sqrt3m$$

  • Question 3
    1 / -0
    From the top of a hill $$h$$ meters high, the angle of depression of the top and the bottom of a pillar are $$\alpha,\ \beta$$ respectively. Then the height(in meters) of the pillar is
    Solution
    $$\tan \alpha  = \dfrac{h-d}{a}$$
    $$\tan \beta = \dfrac{h}{a}$$

    $$\dfrac{\tan \alpha}{\tan \beta} = \dfrac{h-d}{h}$$

    $$\Rightarrow \dfrac{\tan \alpha}{\tan \beta} =  1- \dfrac{d}{h}$$

    $$\Rightarrow \dfrac{d}{h}= \dfrac{\tan \beta-\tan \alpha}{\tan \beta}$$

    $$\Rightarrow d= h\left(\dfrac{\tan \beta-\tan \alpha}{\tan \beta}\right)$$
  • Question 4
    1 / -0
    From the top of the tree, a man observes the angle of depression of a point which is at a distance of $$40\ m$$ from the foot is $$75^{0}$$. The height of the tree is:
    Solution
    Let say AC be the tree and the Observer is at A who is observing point B.
    Given: BC = 40m
    $$\angle B = 75^o $$ = angle of depression     {alternate angles} 

    In $$\triangle ABC$$,

    $$\tan 75^0 = \dfrac{h}{40}$$

    $$\Rightarrow \tan (45^o+30^o) = \dfrac{h}{40}$$

    $$\Rightarrow \dfrac{\tan45^o+ \tan 30^o}{1-\tan45^o\tan 30^o} = \dfrac{h}{40}$$                         $$\because \dfrac{\tan A+ \tan B}{1-\tan A\tan B} = tan(A+B)$$

    $$\Rightarrow \dfrac{1+\dfrac{1}{\sqrt{3}}}{1- 1\times \dfrac{1}{\sqrt{3}}}= \dfrac{h}{40}$$

    $$\Rightarrow \dfrac{(\sqrt{3}+1)}{(\sqrt{3}- 1)} = \dfrac{h}{40}$$

    $$\Rightarrow\left(\dfrac{3+1+2\sqrt{3}}{2}\right) = \dfrac{h}{40}$$      {rationalizing by multiplying and dividing by $$\sqrt 3+1$$}

    $$\Rightarrow (2+\sqrt{3}) = \dfrac{h}{40}$$

    $$\Rightarrow h = 40 (2+\sqrt{3})m$$

  • Question 5
    1 / -0
     A kite is flying with the string inclined at $$30^{o}$$ to the horizon.  The height of the kite above the ground, when the string is $$15\ m$$ long is 
    Solution
    $$\sin{30^0} = \dfrac{AB}{AC} = \dfrac h{15}$$

    $$\Rightarrow \dfrac12 = \dfrac h{15}$$

    $$\Rightarrow h = \dfrac {15}2\ m$$

  • Question 6
    1 / -0
    A pole stands vertically, inside a triangular park $$ABC$$. If the angle of elevation of the top of the pole from each corner of the park is same, then the foot of the pole is at the:
    Solution
    If angle of elevation$$(p)$$   is same from all the vertices then the Pole must be at Equal Distance from each of the vertices which will be $$=R\ (Circumradius)$$

    as $$\tan p=\dfrac{H}{R}\Rightarrow R=\dfrac{H}{\tan p}$$[which is same from all vertices]

    therefore, the pole must be lying on the $$Circumcenter$$

  • Question 7
    1 / -0
    The angles of elevation of top of a pole from two points $$A$$and $$B$$ on the horizontal line lying on opposite side of the pole are observed to be $$30^{\circ}$$ and $$60^{\circ}$$ If $$AB=100\ m$$, then height of the pole is
    Solution
    Let the height of pole be $$PQ=h$$ m.
    And $$QB=d$$ be the distance between $$B$$ and foot of pole.
    $$\tan 60  ^{\circ} = \dfrac{h}{d}$$
           $$\sqrt3=\dfrac{h}{d}$$

    $$\Rightarrow d = \dfrac{h}{\sqrt{3}}$$....(1)

    $$\tan 30  ^{\circ} = \dfrac{h}{100-d}$$
       
          $$\dfrac{1}{\sqrt3} = \dfrac{h}{100-d}$$
    $$\Rightarrow 100-d={\sqrt3}h$$
    Substitute the value of d from the equation (1), we get
    $$\Rightarrow 100- \dfrac{h}{\sqrt{3}} = \sqrt{3} h$$

    $$\Rightarrow  100 =h\left(\sqrt3+ \dfrac{1}{\sqrt{3}}\right)$$

    $$\Rightarrow 100=h ({\dfrac{3+1}{\sqrt3}})$$

    By doing cross multiplication
    $$\Rightarrow 100{\sqrt3}=4h$$
    $$\Rightarrow 4h=100{\sqrt3}$$
    $$\Rightarrow h = 25 \sqrt{3}\ m$$

  • Question 8
    1 / -0
    lf the shadow of a tower is $$\sqrt{3}$$ times of its height, the altitude of the sun is
    Solution
    Let the height of tower be $$h$$.
    $$\tan \theta  = \dfrac{h}{\sqrt{3}h}$$

    $$\Rightarrow \tan \theta  = \dfrac{1}{\sqrt{3}}$$

    $$\Rightarrow \theta = 30^{o}$$

  • Question 9
    1 / -0
    The shadow of a tower on a level plane is found to be $$60$$ metres longer when the sun's altitude is $$30^{0}$$ than that when it is $$45^{0 }$$. The height of the tower in metres is
    Solution
    Let height of tower be $$h \ m$$.
    And length of shadow when sun's altitude is at $$30^0$$.
    $$\tan 45^0 = \dfrac{h}{L_{1}}$$
    $$\Rightarrow L_{1} = h$$

    $$\tan 30^0 = \dfrac{h}{L_{1}+60}$$

    $$\Rightarrow \dfrac{1}{\sqrt{3}}= \dfrac{L_{1}}{L_{1} + 60}$$

    $$\Rightarrow \sqrt{3} =  1+ \dfrac{60}{L_{1}}$$

    $$\Rightarrow L_{1} = \dfrac{60}{(\sqrt{3}-1)}$$

    $$\Rightarrow L_{1} =  30 (\sqrt{3}+1)\ m$$
  • Question 10
    1 / -0
    $$A$$ man on the top of an observation tower finds an object at an angle of depression $$30^{0}$$. After the object was moved $$30$$ metres in a straight line towards the tower, he finds the angle of depression to be $$45^{0}$$. The distance of the object now from the foot of the tower in metres is
    Solution

    Let the height of the tower be $$h$$
    $$\implies AD=h$$
    And $$d$$ be the initial distance of object from tower.
    $$\implies BD=d$$
    So, $$CD=d-30$$
    In $$\triangle ACD$$
    $$\tan 45^0 = \dfrac{h}{d -30 }$$
    $$\implies 1=\dfrac{h}{d-30}$$
    $$\implies h=d-30$$
    In $$\triangle ABD$$
    $$\tan 30^0 = \dfrac{h}{d}$$
    $$\implies \dfrac{1}{\sqrt3}=\dfrac{h}{d}$$
    $$\Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{d-30}{d}$$    (on putting $$h=d-30$$)

    $$\Rightarrow \dfrac{30}{d} = 1- \dfrac{1}{\sqrt{3}}$$

    $$\Rightarrow d = \dfrac{30  \times \sqrt{3}}{(\sqrt{3}-1)}$$

    Now, the distance $$= d-30$$
    $$= \dfrac{30\sqrt{3}}{(\sqrt{3}-1)} -30$$
    $$= \dfrac{30}{(\sqrt{3}-1)}$$
    $$= 15(\sqrt{3}+1)\ m$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now