Self Studies

Some Applications of Trigonometry test - 17

Result Self Studies

Some Applications of Trigonometry test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle of elevation of a cloud from a point $$h$$ metres above the lake water level is $$\theta$$ and the angle of depresion of its image in the lake is $$\phi$$. The height of the cloud is
    Solution
    $$\tan \theta = \dfrac{h_{1}-h}{d}$$

    $$\tan \phi   = \dfrac{h_{1}+h}{d}$$

    $$\Rightarrow\dfrac{\tan \theta}{\tan \phi} = \dfrac{h_{1}-h}{h_{1}+h}$$

    $$\Rightarrow \dfrac{\tan \theta +\tan \phi }{\tan \theta - \tan \phi}= \dfrac{h_{1}-h+h_{1}+h}{h_{1}-h-h_{1}-h}$$

    Using C&D property, we get
    $$\Rightarrow \dfrac{h_{1}}{h}= \dfrac{\tan \theta +\tan \phi }{\tan \theta - \tan \phi}$$

    $$ \Rightarrow h_1= h \left ( \dfrac{\cos \theta  \sin \phi + \sin \theta \cos \phi}{\sin \phi \cos \theta- \cos \phi \sin \theta} \right )$$

    $$\Rightarrow h_1 = h\dfrac{\sin(\phi + \theta)}{\sin(\phi - \theta)}$$
  • Question 2
    1 / -0
    $$A$$ and $$B$$ are two stations due north and south of a tower of height $$25m$$. The angles of depression of the stations from the top of the towe $$r$$ observed to be $$30^{0}$$ and $$45^{0}$$ respectively. The distance between the two stations is
    Solution
    $$\tan 45  ^{0} = \dfrac{25}{d_{2}}$$
              $$d_{2} = 25$$
    $$\tan 30  ^{0} = \dfrac{25}{d_{1}}$$
              $$d_{1} = 25 \sqrt{3}$$
    $$d_{1} + d_{2} = 25(\sqrt{3}+1) m.$$

  • Question 3
    1 / -0
    The angle of elevation of a cliff from a point $$A$$ on the ground and from the point $$B$$ $$100\ m$$ vertically above $$A$$ are $$\alpha$$ and $$\beta$$ respectively. The height of the cliff (in metres) is
    Solution
    $$\tan \alpha = \dfrac{h}{d}$$

    $$\tan \beta  = \dfrac{h-100}{d}$$

    $$\Rightarrow \dfrac{\tan \alpha}{\tan \beta } = \dfrac{h}{h-100}$$

    $$\Rightarrow \dfrac{\tan \alpha}{\tan \beta } = \dfrac{h}{h-100}$$

    $$\Rightarrow \dfrac{\tan \beta}{\tan \alpha} = 1-\dfrac{100}{h}$$

    $$\Rightarrow \dfrac{\tan \alpha - \tan \beta}{\tan \alpha} = \dfrac{100}{h}$$

    $$\Rightarrow h = \dfrac{100\tan \alpha}{\tan \alpha-\tan \beta}$$
    or
    $$ h = \dfrac{100\cot \beta}{\cot \beta-\cot \alpha}$$

  • Question 4
    1 / -0
    From the top of a cliff $$24\ m$$ height, a man observes the angle of depression of a boat is to be $$60^{\circ}$$. The distance of the boat from the foot of the cliff is
  • Question 5
    1 / -0
    From the top of a tower, $$80\text{ m}$$ high, the angles of depression of two points $$P$$ and $$Q$$ in the same vertical plane with the tower are $$45^{^\circ}$$ and $$75^{^\circ}$$ respectively, find the value of $$PQ.$$
    [Use $$\tan75^\circ=2+\sqrt3$$]
    Solution
    Let the distance of point $$Q$$ from the base of the tower be $$y$$ and distance of point $$P$$ from $$Q$$ be $$x.$$

    In $$\triangle QSR,$$
    $$\tan 75^\circ = \dfrac{SR}{y}$$
    $$\Rightarrow (2+\sqrt{3}) = \dfrac{80}{y}$$
    $$\Rightarrow  y= \dfrac{80}{(2+\sqrt{3})}$$

    Now, in $$\triangle PSR,$$
    $$\begin{aligned}{}\tan45^\circ&=\frac{SR}{x+y}\\=1& = \frac{{80}}{{x + y}}\\x + y& = 80\\x + \frac{{80}}{{2 + \sqrt 3 }} &= 80\\x &= 80 - \frac{{80}}{{2 + \sqrt 3 }}\\ &= \frac{{80\left( {\sqrt 3  + 1} \right)}}{{\sqrt 3  + 2}}\\& = 80\left( {\sqrt 3  - 1} \right)\text{ m}\end{aligned}$$

    Hence, $$PQ$$ is equal to $$80(\sqrt3-1)\text{ m}.$$

  • Question 6
    1 / -0
    In a prison wall there is a window of $$1$$ metre height, $$24$$ metres from the ground. An observer at a height of $$10 m$$ from ground, standing at a distance from the wall finds the angle of elevation of the top of the window and the top of the wall to be $$45^{ 0}$$ and $$60^{0}$$ respectively. The height of the wall above the window is
    Solution
    We can see that , $$CE=DF=10$$

    Therefore, $$BC=BE-CE=24-10=14$$

    in $$\triangle BCD$$
    $$\tan45^o=\dfrac{14}{b}\Rightarrow b=14$$

    Now, In $$\triangle ACD$$
    $$\tan60^o=\dfrac{a+14}{14}\Rightarrow \sqrt3=\dfrac{a+14}{14}\Rightarrow a=14(\sqrt3-1)$$

    Therefore, Answer is $$14(\sqrt3-1)$$

  • Question 7
    1 / -0
    If from the top of a tower of $$60$$ metre high, the angles of depression of the top and floor of a house are $$\alpha$$ and $$\beta$$ respetivley and if the height of the house is $$\displaystyle \frac{60\sin(\beta-\alpha)}{x}$$, then $$x=$$
    Solution
    $$\tan \alpha=\dfrac{60-h}{d}$$
    $$\tan \beta=\dfrac{60}{d}$$
    $$\dfrac{\tan \alpha}{\tan \beta}=\dfrac{60-h}{60}$$

    $$\dfrac{\tan \alpha}{\tan \beta}=1-\dfrac{h}{60}$$

    $$\dfrac{h}{60}=\dfrac{\tan \beta-\tan \alpha}{\tan \beta}$$

    $$\dfrac{h}{60}=\dfrac{\sin \beta \ \cos\alpha-\sin\alpha \ \cos\beta}{\cos\alpha \ \sin\beta}$$

    $$\dfrac{h}{60}=\dfrac{\sin(\beta-\alpha)}{\sin\beta \ \cos\alpha}$$

    $$h=\dfrac{60\ \sin(\beta-\alpha)}{\cos\alpha \sin\beta }$$

    $$\therefore x=\cos\alpha \sin \beta $$

  • Question 8
    1 / -0

    On the level ground the angle of elevation of the top of a tower is $$30^{0 }$$ On moving 20 metres nearer tower, the angle of elevation is found to be $$60^{0}$$ The height of the towerin metres is
    Solution
    $$\tan\ 60=\dfrac{h}{d}$$
    $$d=\dfrac{h}{\sqrt{3}}$$
    $$\tan\ 30=\dfrac{h}{20+d}$$
    $$\dfrac{1}{\sqrt{3}}=\dfrac{h}{20+\dfrac{h}{\sqrt{3}}}$$
    $$20\sqrt{3}+h=3h$$
    $$h=10\sqrt{3}$$
  • Question 9
    1 / -0

    The angle of elevation of the top of a hill when observed from a certain point on the horizontal plane through its base is $$30^{0}$$. After walking 120 meters towards it on level ground the elevation is found to be $$60^{0}$$. Find the height of the hill(in meters).
    Solution
    From the triangle $$ABC$$, let
    Height of the hill $$(BC) = h$$
    $$AD = 120\,\mathrm{m}$$ and $$DB = d$$ 

    In the $$\triangle DBC, \angle B = 90^\circ$$
    $$\tan 60^\circ = \dfrac{BC}{DB}$$

    $$\,\Rightarrow\sqrt{3} = \dfrac{h}{d}$$ ........(1)

    In the $$\triangle ABC, \angle B = 90^\circ$$

    $$\tan 30^{\circ}=\dfrac{BC}{AB}$$

    $$\,\Rightarrow\dfrac{1}{\sqrt3}=\dfrac{h}{d+120}$$......(2)

    Dividing (1) by (2)

    $$\dfrac{\dfrac{h}{d}}{\dfrac{h}{d+120}} = \dfrac{\sqrt 3}{\dfrac{1}{\sqrt3}}$$

    $$\Rightarrow \dfrac{d+120}{d} =3$$
    $$\Rightarrow 3d = d + 120$$
    $$\Rightarrow d = 60$$
    Substituting the value of $$d$$ in (1), we get 
    $$\sqrt{3} = \dfrac{h}{60}$$
    $$\Rightarrow h = 60\sqrt{3}$$

    $$\therefore$$ Height of the hill $$=60\sqrt3 \mathrm{m}$$

  • Question 10
    1 / -0

    $$A$$ man observes a tower$$AB$$ of height $$h$$ from a point $$P$$ on the ground. He moves a distance $$d$$ towards the foot of the tower and finds that the angle of elevation is doubled. He further moves a distance $$\dfrac {3d}{4}$$ in the same direction and the angle of elevation is three times that at $$P$$. Then $$\displaystyle \frac{h^{2}}{d^{2}}=$$
    Solution
    In $$\triangle BQR$$ apply sine formula
    $$\displaystyle\frac { d }{ \sin { \left( \pi -3\alpha  \right)  }  } =\frac { \dfrac { 3 }{ 4 } d }{ \sin { \alpha  }  } =4\sin { \alpha  } -3\sin { 3\alpha  } $$
    $$\Rightarrow 4\sin { \alpha  } =3\left( 3\sin { \alpha  } -4\sin ^{ 3 }{ \alpha  }  \right) $$
    Since $$\displaystyle\sin { \alpha  } \neq 0,4=9-12\sin ^{ 2 }{ \alpha  } \Rightarrow \sin ^{ 2 }{ \alpha  } =\frac { 5 }{ 12 } $$
    From $$\triangle BQA$$
    $$h=BQ\sin ^{ 2 }{ \alpha  } =2d\sin { \alpha  }\cos { \alpha  } =2d\sin { d  }\sqrt { 1-\sin ^{ 2 }{ \alpha  }  } $$
    $$\displaystyle=2d\sqrt { \frac { 5 }{ 12 }  } \sqrt { 1-\frac { 5 }{ 12 }  } =\frac { 2d }{ 12 } \sqrt { 35 } $$
    $$\Rightarrow 36{ h }^{ 2 }=35{ d }^{ 2 }  $$
    $$\Rightarrow \dfrac{h^2}{d^2}=\dfrac{35}{36}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now