Let A be the point of the top of the $$20m$$ pole. Let B be the point of the foot of the$$ 20m$$ poleLet C be the point of the top of the $$ 80m$$pole.
Let D be the point of the foot of the$$ 80m$$ pole.
Let E be the point of intersection of the line segments AD and BC.
From E drop a perpendicular to the ground.
Let F be the point on the ground where perpendicular from E meets the ground.
Let X be the distance from E to F.
Let P be the distance from B to F.
Let Q be the distance from F to D.
Triangles BEF and BCD are similar so we get Equation 1:
$$\dfrac { X }{ P } =\dfrac { 80 }{ \left( P+Q \right) } $$
Triangles DEF and DAB are similar so we get
$$\dfrac { X }{ Q } =\dfrac { 20}{ \left( P+Q \right) } $$
Multiplying both sides by 4 we get equation 2
$$\dfrac { 4X }{ Q } =\dfrac { 80 }{ \left( P+Q \right) } $$
Combining Equations 1 and 2 we get
$$\dfrac { X }{ P } =\dfrac { 4X }{ Q } $$
Simplifying this we get
$$\dfrac { 1 }{ P } =\dfrac { 4 }{ Q } $$
$$Q=4P$$
Substituting$$ Q=4P$$ into Equation 1 we get:
$$\dfrac { X }{ P } =\dfrac { 80 }{ \left( P+Q \right) } $$
$$\dfrac { X }{ P } =\dfrac { 80 }{ P+4P } $$
$$\dfrac { X }{ P } =\dfrac { 80 }{ 5P } $$
$$X=\dfrac { 80 }{ 5P } \times P$$
$$X=\dfrac { 8 }{ 5 } = 16 m$$