Self Studies

Some Applications of Trigonometry test - 21

Result Self Studies

Some Applications of Trigonometry test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two vertical poles $$20m$$ and $$80m$$ high stand a part on a horizontal plane. The height of the point of intersection of the lines joining the top of each pole to the foot of the other is
    Solution
    $$\dfrac bh= \dfrac{a+b}{20}$$

    $$\dfrac ah= \dfrac{a+b}{80}$$

    $$\dfrac {80} h = 1+ \dfrac ba $$

    $$\dfrac{80-h}{h}= \dfrac ba $$

    $$\dfrac{20} h = \dfrac ab +1$$

    $$\cfrac{20}h = \dfrac h {(80-h)}+1$$

    $$\dfrac {20} h= \dfrac{80-h+h}{80-h}$$

    $$100h= 1600$$
    $$h= 16 m$$

  • Question 2
    1 / -0

    On one side of a road of width $$d$$ metres there is a point of observation $$P$$ at a height $$h$$ metres from the ground. If a tree on the other side of the road, makes a right angle at $$P$$, height of the tree in metres is:
    Solution
    In $$\triangle PBA,{ AP }^{ 2 }={ h }^{ 2 }+{ d }^{ 2 }$$
    In $$\triangle PCD,{ PC }^{ 2 }={ (H-h) }^{ 2 }+{ d }^{ 2 }$$
    In $$\triangle ADC,{ AC }^{ 2 }={ AP }^{ 2 }+{ PC }^{ 2 }$$
    $${ H }^{ 2 }={ h }^{ 2 }+{ d }^{ 2 }+{ (H-h) }^{ 2 }+{ d }^{ 2 }$$
    $${ H }^{ 2 }={ h }^{ 2 }+2{ d }^{ 2 }+{ H }^{ 2 }+{ h }^{ 2 }-2Hh$$
    $$2Hh=2{ h }^{ 2 }+2{ d }^{ 2 }\Rightarrow H=\cfrac { { h }^{ 2 }+{ d }^{ 2 } }{ h } $$

  • Question 3
    1 / -0
    A vertical tower of height $$50$$ meters high stands on a sloping ground. The bottom of the tower is at the same level as the middle point of a vertical flagpole. From the top of the tower, the angles of depression of the top and bottom of the flagpole are $$15^{0}$$ and $$45^{0}$$ respectively. The height of the flagpole is
    Solution
    In, $$\triangle ABC,$$
    $$\Rightarrow \tan { 15° } =\dfrac { 50-x }{ a }$$
    $$\Rightarrow a=\dfrac { 50-x }{ \tan { 15° }  } $$
    In, $$\triangle ADE,$$
    $$\Rightarrow \tan { 45° } =\frac { 50+x }{ a } $$
    $$\Rightarrow a=50+x$$
    $$\Rightarrow \dfrac { \left( 50-x \right)  }{ \tan { 15° }  } =50+x$$
    $$\Rightarrow 50-x=\tan { 15° } \left( 50+x \right) $$
    $$\Rightarrow 50-x=\dfrac { \left( \sqrt { 3 } -1 \right)  }{ \left( \sqrt { 3 } +1 \right)  } \left( 50+x \right) $$
    $$\Rightarrow \left( 50-x \right) \left( \sqrt { 3 } +1 \right) =\left( \sqrt { 3 } -1 \right) \left( 50+x \right) $$
    $$\Rightarrow 50\sqrt { 3 } -\sqrt { 3 } x+50-x=50\sqrt { 3 } -50+\sqrt { 3 } x-x$$
    $$\Rightarrow 2\sqrt { 3 } x=100$$
    $$\Rightarrow x=\dfrac { 50 }{ \sqrt { 3 }  } $$
    $$\therefore$$ Height of flagpole $$=2x=\dfrac { 100 }{ \sqrt { 3 }  } m$$
    Hence, the answer is $$\dfrac { 100 }{ \sqrt { 3 }  } m.$$

  • Question 4
    1 / -0
    The height of a hill is $$3,300$$ metres. From the point $$D$$ on the ground the angle of elevation of the top of the hill is $$60^{0}$$. A balloon is moving with constant speed vertically upwards from $$D.$$ After $$5$$ minutes of its movement a person sitting in it observes the angle of elevation of the top of the hill as $$30^{0}$$. The speed of the balloon is
    Solution
    We can see that, $$BCDE$$ is a Rectangle
    So, $$BE=CD$$ and $$BC=ED$$

    In $$\triangle AED$$
    $$\tan60^o=\dfrac{AE}{ED}\Rightarrow \sqrt3=\dfrac{3300}{ED}\Rightarrow ED=\dfrac{3300}{\sqrt3}=1100\sqrt3$$

    $$ED=BC=1100\sqrt3$$

    in $$\triangle ABC$$
    $$tan30^o=\dfrac{AB}{BC}\Rightarrow AB=BC\tan30^o\Rightarrow 1100$$

    Distance Covered by Balloon is $$CD=BE=AE-AB=3300-1100=2200\ m=2.2 \ km$$

    So, Speed will be $$=\dfrac{2.2\ km}{\dfrac{5}{60}\ hr}=26.4 \ km/hr$$

  • Question 5
    1 / -0
    Two light posts are of equal height. A person standing mid-way between the line joining their feet, observes the elevation of the posts to be $$30^{0}$$. After walking $$12$$ metres towards one of them, he observes that the same post now subtends an angle of $$60^{0}$$. Find the distance between them.
  • Question 6
    1 / -0
    The angle of elevation of a tower from a point $$A$$ due south of it, is $$x$$, from a point $$B$$ due east of $$A$$, is $$y$$. If $$AB=l,$$ then the height $$h$$ of the tower is given by
    Solution
    Let $$OP$$ be the tower of height $$h$$.
    In right angles $$\triangle OAP$$
    $$\displaystyle \angle OAP=x\Rightarrow \frac { OA }{ h } =\cot { x } \Rightarrow OA=h\cot { x } $$   ...(1)
    In right angled $$\triangle OBP$$
    $$\displaystyle \angle OBP=y\Rightarrow \frac { OB }{ h } =\cot { y } \Rightarrow OB=h\cot { y } $$   ...(2)
    In right angles $$\triangle OAB$$
    $${ AB }^{ 2 }+{ OA }^{ 2 }={ OB }^{ 2 }\Rightarrow { l }^{ 2 }+{ h }^{ 2 }\cot ^{ 2 }{ x } ={ h }^{ 2 }\cot ^{ 2 }{ y } $$
    $$\displaystyle \Rightarrow { h }^{ 2 }\left( \cot ^{ 2 }{ y } -\cot ^{ 2 }{ x }  \right) ={ l }^{ 2 }\Rightarrow h=\frac { l }{ \sqrt { \cot ^{ 2 }{ y } -\cot ^{ 2 }{ x }  }  } $$

  • Question 7
    1 / -0
    A pole 6 m high casts a shadow $$2\sqrt{3}$$ m long on the ground, then the Sun's elevation is
    Solution
    The sun's elevation angle will be opposite to the side which depicts the height of the pole, and base will be the length of the shadow.
    Base=$$2\sqrt{3}\ m$$
    height=$$6\ m$$
    $$\tan(\theta)=\dfrac{6}{2\sqrt3}$$$$=\sqrt{3}$$
    $$\theta=\tan^{-1}(\sqrt{3})$$
    $$=60^0$$
    $$\theta$$ being the angle of elevation.

  • Question 8
    1 / -0
    The angle of elevation a vertical tower standing inside a triangular at the vertices of the field are each equal to $$\theta$$. If the length of the sides of the field are $$30\ m,\ 50\ m$$ and $$70\ m$$, the height of the tower is:
    Solution
    $$tan  \theta = \dfrac hR$$

    $$R= \dfrac{abc}{40}$$

    $$\Delta = \sqrt{\left ( \dfrac{3+5+7}{2} \right )\left ( \dfrac{3+5+7}{2} \right )\left ( \dfrac{7+3-5}{2} \right )\left ( \dfrac{7+5-3}{2} \right )\times 10^4} = \dfrac{15\times 1\times 5\times 9\times 10^4}{10}$$

    $$\Delta = 25\times 5\times 3\sqrt{3}$$

    $$R= \dfrac{30\times 50\times 70}{4\times 25\times 5\times 3\sqrt{3}}$$

    $$R= \dfrac{70}{\sqrt{3}}$$

    $$h= \dfrac {70}{\sqrt{3}}  tan \theta $$
  • Question 9
    1 / -0
    Two vertical poles $$20\ m$$ and $$80\ m$$ high stand apart $$50m$$ on a horizontal plane. The height of the point of intersection of the lines joining the top of each pole to the foot of the other is
    Solution
    Let A be the point of the top of the $$20m$$ pole. 
    Let B be the point of the foot of the$$ 20m$$ pole
    Let C be the point of the top of the $$ 80m$$pole. 
    Let D be the point of the foot of the$$ 80m$$ pole. 
    Let E be the point of intersection of the line segments AD and BC. 
    From E drop a perpendicular to the ground. 
    Let F be the point on the ground where perpendicular from E meets the ground. 
    Let X be the distance from E to F. 
    Let P be the distance from B to F. 
    Let Q be the distance from F to D. 
    Triangles BEF and BCD are similar so we get Equation 1: 
    $$\dfrac { X }{ P } =\dfrac { 80 }{ \left( P+Q \right)  } $$
    Triangles DEF and DAB are similar so we get
    $$\dfrac { X }{ Q } =\dfrac { 20}{ \left( P+Q \right)  } $$
    Multiplying both sides by 4 we get equation 2
    $$\dfrac { 4X }{ Q } =\dfrac { 80 }{ \left( P+Q \right)  } $$
    Combining Equations 1 and 2 we get
    $$\dfrac { X }{ P } =\dfrac { 4X }{ Q } $$
    Simplifying this we get
    $$\dfrac { 1 }{ P } =\dfrac { 4 }{ Q } $$
    $$Q=4P$$
    Substituting$$ Q=4P$$ into Equation 1 we get: 
    $$\dfrac { X }{ P } =\dfrac { 80 }{ \left( P+Q \right)  } $$

    $$\dfrac { X }{ P } =\dfrac { 80 }{ P+4P } $$

     $$\dfrac { X }{ P } =\dfrac { 80 }{ 5P } $$

     $$X=\dfrac { 80 }{ 5P } \times P$$

    $$X=\dfrac { 8 }{ 5 } = 16 m$$
  • Question 10
    1 / -0
    Two poles of height $$a$$ and $$b$$ stand at the centres of two circular plots which touch each other externally at a point and the two poles subtends angles of $$30^{o}$$ and $$60^{o}$$ respectively at this point. Then the distance between the centres of these plots is:
    Solution
    In $$\triangle ABC,\tan { 30° } =\cfrac { a }{ BC } $$

    $$BC=\sqrt { 3 } a.......(1)$$

    In $$\triangle ECD,\tan { 60° } =\cfrac { b }{ CD } $$

    $$CD=\cfrac { b }{ \sqrt { 3 }  } .......(2)$$

    Required distance is equal to $$BC+CD$$

    $$BC+CD=a\sqrt { 3 } +\cfrac { b }{ \sqrt { 3 }  } =\cfrac { 3a+b }{ \sqrt { 3 }  } $$

    Distance between poles$$=\cfrac { 3a+b }{ \sqrt { 3 }  } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now