Self Studies

Some Applications of Trigonometry test - 23

Result Self Studies

Some Applications of Trigonometry test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If a pole of height 6 m casts a shadow $$2\sqrt{3}$$ long on the ground, then the suns elevation is.
    Solution
    as we can observe that,
    The Angle of Elevation of Sun at point $$P$$ is equal to the Angle of Elevation of the Building at point $$P.$$

    so, $$\tan A=\dfrac{6}{b}=\dfrac{6}{2\sqrt3}=\sqrt3\Rightarrow A=60^o$$

    Therefore, Answer is $$60^o$$

  • Question 2
    1 / -0
    The angle of elevation of the top of the tower from a point on the ground, which is $$30 m$$ away from the foot of the tower is $$45^{\circ}$$. The height of the tower (in metres) is:
    Solution
    Let the height of tower be $$'h'$$ $$m.$$
    Now, in $$\triangle ABC,$$
    $$\Rightarrow \tan { 45^{\circ} } =\dfrac { AB }{ BC } =\dfrac { h }{ 30 } $$
    $$\Rightarrow 1=\dfrac { h }{ 30 } $$
    $$\Rightarrow h=30m$$
    Hence, the answer is $$30m.$$

  • Question 3
    1 / -0
    A Lamp Post, $$5\sqrt{3}m$$ high, cast a shadow $$5\ m$$ long on the ground. The suns elevation of this point is:
    Solution

    Let the angle of elevation be $$'\theta'.$$
    In, $$\triangle ACB,$$
    $$\Rightarrow \tan { \theta  } =\dfrac { AB }{ BC } =\dfrac { 5\sqrt { 3 }  }{ 5 } $$
    $$\Rightarrow \tan { \theta  } =\sqrt { 3 } $$
    $$\Rightarrow$$ Or $$ \theta =60^{\circ}$$
    Hence, the answer is $$60^{\circ}.$$

  • Question 4
    1 / -0
    When the angle of elevation of the sun is $$ 30^{\circ}$$, the length of the shadow cast by 50 m high building is
    Solution
    Let the length of shadow be $$'x'\ m$$
    In $$ACB,$$
    $$\Rightarrow \tan { 30^{\circ} } =\dfrac { AB }{ BC } =\dfrac { 50 }{ x } $$
    $$\Rightarrow \dfrac { 1 }{ \sqrt { 3 }  } =\dfrac { 50 }{ x } $$
    $$\Rightarrow x=50\sqrt { 3 } m$$
    Hence, the answer is $$50\sqrt { 3 } m.$$

  • Question 5
    1 / -0
    A tower stands vertically on the ground. From a point on the ground which is $$25\ m$$ away from the foot of the tower, the angle of elevation of the top of the tower is found to be $$45^{\circ}$$. Then  the height $$(in\ meters)$$ of the tower is:
    Solution
    Let the height of the tower be $$'h'$$ $$m.$$
    Now, in $$\triangle ACB,$$
    $$\Rightarrow \tan { 45^{\circ}} =\dfrac { AB }{ BC } =\dfrac { h }{ 25 } $$
    $$\Rightarrow 1=\dfrac { h }{ 25 } $$
    $$\Rightarrow h=25\ m$$
    Hence, the height of tower is $$25\ m.$$

  • Question 6
    1 / -0

    Directions For Questions

    From the top of a tower, the angles of depression of two objects on the same side of the tower are found to be $$\alpha $$ and $$\beta $$, where $$\alpha >\beta $$.

    ...view full instructions

    The height of the tower if distance between the objects, $$p=150\ m,\alpha =60^o\: and\: \beta =30^o$$, is:
    Solution
    $$Height \: of \: the \: tower \: (AB)=h\:m$$
    $$distance \: (CD) =p \: m$$
    $$Let \:distance (BC) =xm$$
    $$\angle ACB=\alpha \: and\: \angle ADB=\beta $$
    In right $$\triangle ABD$$,
    $$\frac{AB}{BC}=\tan \alpha $$
    $$\Rightarrow \frac{h}{x}=\tan \alpha $$
    $$\Rightarrow {h}={x}\tan \alpha $$ .....( i)
    In right $$\triangle ABD$$,
    $$\frac{AB}{BD}=\tan \beta $$
    $$\Rightarrow \frac{h}{BC+CD}=\tan \beta$$
    $$\Rightarrow h=(x+p)\tan \beta $$ ..... (ii)
    From (1), we get
    $$x=\frac{h}{\tan \alpha }$$
    Thus, $$h = (\frac{h}{\tan\alpha} + p) \tan \beta$$
    $$h = (\frac{h + p \tan \alpha}{\tan \alpha}) \tan \beta$$
    $$h \tan \alpha = h \tan \beta + p \tan \alpha \tan \beta$$
    $$h (\tan \alpha - \tan \beta) = p \tan \alpha \tan \beta$$
    $$h = \frac{p \tan \alpha \tan \beta}{\tan \alpha - \tan \beta}$$

    Now, putting $$p=150\:m,\alpha =60^o\: and\: \beta =30^o$$, we get
    $$h=\frac{150\times \tan 30^o\times \tan 60^o }{\tan 60^o-\tan 30^o }m=129.9\: m$$
    Hence, $$the \: height \: of \: the \: tower =129.9\:m\simeq 130\:m$$

  • Question 7
    1 / -0

    Directions For Questions

    From the top of a tower, the angles of depression of two objects on the same side of the tower are found to be $$\alpha $$ and $$\beta $$ where $$\alpha >\beta $$.

    ...view full instructions

    If the distance between the objects is $$p$$ metres, then the height $$h$$ of the tower is:
    Solution
    $$Height \: of \: the \: tower \: (AB)=h\:m$$
    $$distance \: (CD) =p \: m$$
    $$Let \:distance (BC) =xm$$
    $$\angle ACB=\alpha \: and\: \angle ADB=\beta $$
    In right $$\triangle ABD$$,
    $$\frac{AB}{BC}=\tan \alpha $$
    $$\Rightarrow \frac{h}{x}=\tan \alpha $$
    $$\Rightarrow {h}={x}\tan \alpha $$ .....( i)
    In right $$\triangle ABD$$,
    $$\frac{AB}{BD}=\tan \beta $$
    $$\Rightarrow \frac{h}{BC+CD}=\tan \beta$$
    $$\Rightarrow h=(x+p)\tan \beta $$ ..... (ii)
    From (1), we get
    $$x=\frac{h}{\tan \alpha }$$
    Thus, $$h = (\frac{h}{\tan\alpha} + p) \tan \beta$$
    $$h = (\frac{h + p \tan \alpha}{\tan \alpha}) \tan \beta$$
    $$h \tan \alpha = h \tan \beta + p \tan \alpha \tan \beta$$
    $$h (\tan \alpha - \tan \beta) = p \tan \alpha \tan \beta$$
    $$h = \frac{p \tan \alpha \tan \beta}{\tan \alpha - \tan \beta}$$
    Hence proved.

  • Question 8
    1 / -0
    If the length of the shadow of a tower is $$\sqrt{3}$$ times that of its height, then the angle of elevation of the sun is
    Solution
    Let height of tower (AB) be $$h\ \text{metres}$$ 
    Then length of its shadow will be $$BC = \sqrt{3}\:h\:\text{metres}$$ 
    Let angle of elevation be $$\theta $$
    Now, In $$\triangle ABC$$
    $$\tan \theta = \dfrac{P}{B} = \dfrac{AB}{BC}$$
    $$\tan \theta = \dfrac{h}{\sqrt{3}h}=\dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow \theta =30^o$$

  • Question 9
    1 / -0
    The top of a broken tree has it's top touching the ground (shown in the adjoining figure) at a distance of $$10\ m$$ from the bottom. If the angle made by the broken part with the ground is $$30^o$$, then the length of the broken part is:

    Solution
    The tree broke at point B, and touches the ground at A. The roots are at point C.
    Now, the distance between the top of broken part and the roots $$= 10\ m$$
    Considering it as a triangle system,$$\triangle ABC$$ is a right angled triangle.
    $$\displaystyle \cos 30^o = \frac{Perpendicular}{Hypotenuse} = \frac{AC}{AB}$$
    $$\displaystyle \frac{\sqrt{3}}{2} = \frac{10}{AB}$$
    $$\therefore$$ Length of broken part $$\displaystyle AB = \frac{20}{\sqrt{3}}\ m$$ 

  • Question 10
    1 / -0
    A tree breaks due to storm and the broken part bends so that the top of the tree just touches the ground, making an angle of $$30^o$$ with the horizontal. The distance from the foot of the tree to the point where the top touches the ground is 10 m. The height of the tree is
    Solution
    Let BD be the tree broken at point C such that the broken part CD takes the position CA and strikes the ground at A. It is given that $$AB=10\ \text{m}$$ and $$\angle{BAC=30^{\circ}}$$
    Let $$BC=x\ \text{m}$$ and $$CD=CA=y\ \text{m}$$
    In right angled triangle ABC, we have
    $$\tan30^{\circ}=\dfrac{BC}{AB}$$
    $$\Rightarrow \dfrac{1}{\sqrt3}=\dfrac{x}{10}$$
    $$\Rightarrow x=\dfrac{10}{\sqrt3}=\dfrac{10\sqrt3}{3}$$
    And $$\cos30^{\circ}=\dfrac{AB}{AC}$$
    $$\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{10}{y}$$
    $$\Rightarrow y=\dfrac{20}{\sqrt3}=\dfrac{20\sqrt3}{3}$$
    Now, 
    Height of the tree $$=x+y$$
                                   $$=\dfrac{10\sqrt3}{3}+\dfrac{20\sqrt3}{3}$$
                                   $$=\dfrac{30\sqrt3}{3}$$
                                   $$=10\sqrt3\ \text{m}$$

    Hence, the height of the tree is $$10\sqrt3\ \text{m}$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now