Self Studies

Some Applications of Trigonometry test - 25

Result Self Studies

Some Applications of Trigonometry test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A vertical tower OP stands at the centre O of a square ABCD. Let h and b denote the length OP and AB respectively. Suppose $$\angle APB = 60^{0}$$, then the relationship between h and b can be expressed as:
    Solution
     $$ Given-\quad \\ ABCD\quad is\quad a\quad square\quad whose\quad central\quad point\quad is\quad O.\quad \\ OP\bot BO\quad \& \quad \angle APB={ 60 }^{ o }.\quad AB=b\quad \& \quad OP=h.\\ To\quad find\quad out-\\ The\quad relation\quad between\quad b\quad \& \quad h.\\ Solution-\\ O\quad is\quad the\quad central\quad point\quad of\quad the\quad square\quad ABCD.\\ \therefore \quad OB=\frac { 1 }{ 2 } \times diagonal=\frac { \sqrt { 2 } b }{ 2 } =\frac { b }{ \sqrt { 2 }  } .........(i)\\ Now\quad O\quad is\quad the\quad central\quad point\quad of\quad the\quad square\quad ABCD.\\ \therefore \quad PA=PB\quad i.e\quad \angle ABP=\angle BAP.........(ii)\\ Again\quad \angle APB={ 60 }^{ o }.\\ \therefore \quad \angle ABP+\angle BAP={ 180 }^{ o }-{ 60 }^{ o }\quad (by\quad angle\quad sum\quad property\quad of\quad triangles)\quad \\ \therefore \quad \Longrightarrow \angle ABP+\angle BAP={ 120 }^{ o }\quad \quad \\ \therefore \quad \angle ABP=\angle BAP={ 60 }^{ o }.(from\quad ii)\\ So\quad \Delta PAB\quad is\quad an\quad equilateral\quad one.\\ \therefore \quad PB=AB=b.....(iii)\\ Considering\quad \Delta POB\quad we\quad have\quad \angle O={ 90 }^{ o },OB=\frac { b }{ \sqrt { 2 }  } \quad (from\quad i)\\ and\quad PB=b\quad (from\quad iii)\\ \therefore \quad Applying\quad Pythagoras\quad theorem\\ { OP }^{ 2 }+{ OB }^{ 2 }={ PB }^{ 2 }\\ \Longrightarrow { h }^{ 2 }+{ \left( \frac { b }{ \sqrt { 2 }  }  \right)  }^{ 2 }={ b }^{ 2 }\\ \Longrightarrow 2{ h }^{ 2 }={ b }^{ 2 }\\ Ans-\quad Option\quad B $$ 

  • Question 2
    1 / -0
    Two villages are 2 kms apart. If the angles of depression of these villages when observed from a plane are found to be $$45^0$$ and $$60^0$$ respectively, then height of the plane is

    Solution
    Let PQ $$=$$ h m be a plane
    From right angled $$\Delta PAQ,$$

    $$tan45^0=\frac{PQ}{AQ}$$

    $$\therefore 1=\frac{h}{x}$$

    or $$x = h$$..............(i)

    Again from right angled $$\Delta$$ PBQ,

    $$tan 60^0=\frac{PQ}{QB}$$

     or $$\sqrt{3}=\frac{h}{2-x}$$

    From equation $$(i),\sqrt{3}=\frac{h}{2-h}$$

    or $$2\sqrt{3}- \sqrt{3}h=h$$

    or $$h+\sqrt{3}h=2\sqrt{3}$$

    or $$h(1+\sqrt{3})=2\sqrt{3}$$

    or $$h=\frac{2\sqrt{3}}{1+\sqrt{3}}=\frac{2\sqrt{3}}{1+\sqrt{3}}\times\frac{1-\sqrt{3}}{1-\sqrt{3}}$$

    $$-\frac{2\sqrt{3}-6}{1-3}-\frac{-2(3-\sqrt{3})}{-2}$$

    $$=(3-\sqrt{3})$$km

  • Question 3
    1 / -0
    The angle of elevation of a cloud from a point $$h$$ meters above the surface of a lake is $$300$$ and the angle of depression of its reflection is $$600$$. Then the height of the cloud above the surface of the lake is
    Solution
    Consider the following diagram with the cloud at the point A
    Let the perpendicular distance of the cloud from the the elevation be $$x=AC$$
    Angle ABC$$=30^0$$
    angle DBC$$=60^0$$
    Therefore
    Consider triangle ABC
    $$tan30^0=\frac{x}{BC}=\frac{1}{\sqrt{3}}$$
    $$BC=\sqrt{3}x$$ ...(i)
    Similarly consider triangle BDC
    $$tan60^0=\frac{h+h+x}{BC}=\sqrt{3}$$
    $$2h+x=\sqrt{3}BC$$ ...(ii)
    Substituting the value of BC from equation i we get
    $$2h+x=\sqrt{3}\sqrt{3}x$$
    $$3x=2h+x$$
    $$h=x$$
    Therefore the height of the cloud above the surface of the water
    $$=h+x$$
    $$=2h$$
    Hence answer is D


  • Question 4
    1 / -0
    The angle of elevation of the top of a tower at a distance of $$\dfrac{50\sqrt{3}}{3}$$metres from the foot is $$60^0$$.
    Find the height of the tower.
    Solution
    Let $$AB$$ be the height of the tower.
    Consider $$\triangle ABC$$

    $$\tan60^0=\dfrac{AB}{BC}$$

    $$\sqrt{3}=\dfrac{AB}{\dfrac{50\sqrt{3}}{3}}$$

    $$AB=\dfrac{50\sqrt{3}\sqrt{3}}{3}$$

    $$AB=50m$$
    Hence the answer is option D
  • Question 5
    1 / -0
    The shadow of a stick of height 1 meter, when the angle of elevation of the Sun is $$60^{\circ}$$, will be

    Solution
    Let AB $$=$$ 1 m be the stick.
    Let AC be the shadow of length $$x.$$
    From right angled $$\Delta ACB,$$

    $$\tan 60^0=\dfrac{1}{x}$$

    or $$\sqrt{3}=\dfrac{1}{x}$$

    or $$x=\dfrac{1}{\sqrt{3}}$$m

  • Question 6
    1 / -0
    A man looks from the top of a vertical tower 30 metres high at a marked point upon the horizontal plane on which the tower stands. The angle of depression of this point is $$30^0.$$ The distance of the marked point from the foot of the tower is
    Solution
    Consider the above diagram
    In triangle POM
    Let $$OM$$ be the height of the tower
    Let $$OP$$ be the horizontal distance of the marked point  from the foot of the tower
    It is given that angle of depression$$=P=30^0$$
    Therefore
    $$\frac{MO}{PO}$$
    $$=\frac{30m}{PO}$$
    $$=tan30^0=\frac{1}{\sqrt{3}}$$
    Therefore $$PO=30\sqrt{3}$$ metres
    Hence answer is D
  • Question 7
    1 / -0
    The angle of elevation of the top of a tower as observed from a point on the horizontal ground is x. If we move a distance d towards the foot of the tower, the angle of elevation increases to y, then the height of the tower is

    Solution
    Consider the above given triangle
    Let AB be the height of the tower and $$\angle ACB=x$$ and $$\angle ADB=y$$ ...(given)
    Consider triangle ADB
    $$tany=\frac{AB}{BD}$$
    $$BD={AB}coty$$ ...(i)
    Consider triangle ACD
    $$tanx=\frac{AB}{BD+CD}$$
    $$BD+CD=ABcotx$$
    $${AB}coty+CD=ABcotx$$ ...from(i)
    $$d=AB(cotx-coty)$$
    $$AB=\frac{d}{cotx-coty}$$
    Upon simplifying we get
    $$AB=\frac{d(tanx tany)}{tany-tanx}$$
    Hence answer is A
  • Question 8
    1 / -0
    On the level ground, the angle of elevation of the top of a tower is $$30^{\circ},$$ on moving 20 metres nearer to it the angle of elevation is $$60^{\circ}$$ The height of the tower is

    Solution
    From the $$\triangle ABC$$
    $$\tan 60^{\circ}=\dfrac{AB}{BC}$$
    $$\implies \dfrac{AB}{BC}=\sqrt{3}$$
    $$\implies BC=\dfrac{AB}{\sqrt 3}$$  ......(i)
    Consider $$\triangle ADB$$
    $$\tan30^{\circ}=\dfrac{1}{\sqrt{3}}=\dfrac{AB}{BC+20}$$
    $$\implies BC+20=AB\sqrt{3}$$
    $$\implies 20=AB\sqrt{3}-BC$$
    Substituting the value of BC from (i)
    $$20=AB\sqrt{3}-\dfrac{AB}{\sqrt{3}}$$
    $$20=\dfrac{2AB}{\sqrt{3}}$$
    $$AB=10\sqrt{3}\text{ m}$$

    Hence answer is D

  • Question 9
    1 / -0
    The angles of elevation of the top of a tower at the top and the foot of a pole of height $$10$$ m are $$30$$ $$^{\circ}$$ and $$60$$ $$^{\circ}$$ respectively. The height of the tower is
    Solution
    Let AB and CD be the pole and tower respectively.
    Let $$CD =h$$
    Then $$\angle DAC = 60^{\circ}      and     \angle DBE= 30^{\circ}$$
    Now $$\cfrac{CD}{CA} = \tan 60^{\circ}= \sqrt{3}$$
    $$\therefore CD = \sqrt{3} CA \Rightarrow \cfrac{h}{\sqrt{3}}= CA$$
    Again $$ \cfrac{DE}{BE} = \tan 30^{\circ}=\cfrac{h}{\sqrt{3}}$$
    $$\therefore (h-10) = \cfrac{BE}{\sqrt{3}} = \cfrac{CA}{\sqrt{3}} $$        ...$$[\because  BE = CA]$$
    $$\displaystyle = \cfrac{h / \sqrt{3}}{\sqrt{3}} = \cfrac{h}{3}    \Rightarrow 3h - 30 = h  \Rightarrow 2h = 30  \Rightarrow h =15$$
    Hence, height of the power $$=15$$ m

  • Question 10
    1 / -0
    A light-house $$100$$ m high observe that two ships are approaching it from West and South respectively. If the angles of depression of the two ships are $$30$$ $$^{\circ}$$ and $$45$$ $$^{\circ}$$ respectively, then the distance between the two ships is -
    Solution
    we can observe that  in $$\triangle ABC$$
    $$\tan45^o=\dfrac{100}{a}\Rightarrow a=100$$

    Similarly, in $$\triangle ACD$$
    $$\tan30^o=\dfrac{100}{b}\Rightarrow b=100\sqrt3$$

    So, in $$\triangle BCD$$ (Top View)
    $$a^2+b^2=d^2\Rightarrow d^2=10000+30000=40000\Rightarrow d=200$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now