Let $$AB$$ be the men of height $$h\ m$$,
$$CD$$ and $$EF$$ be the two towers of height $$2h\ m$$ and $$4h\ m$$ respectively.
$$\therefore \angle CAE={ 90 }^{ o }$$
Draw $$PQ\parallel DF$$ passing through $$A$$.
$$\Rightarrow CP=PD=h\ m,QF=h\ m$$
$$\therefore EQ=3h\ m$$
Let $$DB$$ be $$d\ m$$
$$\therefore DB=PA=d\ m$$ and $$BF=AQ=\left( 4h-d \right) m$$
PAQ is a straight line.
$$\therefore \angle PAC+\angle CAE+\angle EAQ={ 180 }^{ o }$$
$$\angle PAC+{ 90 }^{ o }+\angle EAQ={ 180 }^{ o }$$
$$\therefore \angle PAC+\angle EAQ={ 90 }^{ o }$$
Let $$\angle PAC$$ be $$x$$.
$$\therefore \angle EAQ={ 90 }^{ o }-x$$ ...(1)
In $$\triangle CPA,\angle PAC=x$$
$$\Rightarrow \angle CPA={ 90 }^{ o }-x$$ ...(2)
In $$\triangle CPA$$ and $$\triangle AQE$$
$$\angle PCE=\angle EAQ$$ $$\left[ each{ 90 }^{ o }-x \right] $$
$$\angle CPA=\angle EAQ$$ $$\left[ each{ 90 }^{ o } \right] $$
$$\therefore \triangle CPA\sim \triangle AQE$$
$$\displaystyle\Rightarrow \frac { CP }{ AQ } =\frac { PA }{ QE } =\frac { CA }{ AE } $$ (ESST)
$$\displaystyle\therefore \frac { h }{ 4h-d } =\frac { d }{ 3h } $$
$$\Rightarrow 3{ h }^{ 2 }=d\left( 4h-d \right) $$
$$\Rightarrow 3{ h }^{ 2 }=4dh-{ d }^{ 2 }$$
$$\left( d-3h \right) \left( d-h \right) =0$$
$$d-3h=0$$ or $$d=h$$
when $$d=3h$$
$$\displaystyle\frac { DB }{ BF } =\frac { 3h }{ h } =\frac { 3 }{ 1 } =3:1$$
when $$d=h$$
$$\displaystyle\frac { DB }{ BF } =\frac { h }{ 3h } =\frac { 1 }{ 3 } =1:3$$
Henc,e option $$D$$ is correct.