Self Studies

Some Applications of Trigonometry test - 28

Result Self Studies

Some Applications of Trigonometry test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A boy $$1.7$$ m tall, is $$25$$ m away from a tower and observes the angle of elevation of the top of the tower to be $${60}^{o}$$. Find the height of the tower.
    Solution
    Let $$AA'$$ be the boy and the tower be $$B'C$$
    Therefore, $$AA'=1.7$$ m $$=BB'$$
    and $$A'B'=25\ m=AB$$
    Now, angle of elevation is $$\angle CAB=\theta$$.
    Given, $$\theta=60^o $$
    $$\Rightarrow \tan\theta=\dfrac{BC}{AB}$$
    $$\Rightarrow 25\tan 60^o=BC$$
    $$\Rightarrow BC=25\sqrt3$$
    Now, height of tower
    $$=BC+BB'$$
    $$=25\sqrt3+1.7$$
    $$=45$$ m

  • Question 2
    1 / -0
    A tree is broken by the wind. Its top struck the ground at an angle $${30}^{o}$$ at a distance of $$30m$$ from its foot. The whole height of the tree is:
    Solution

    From figure,

    In $$\triangle ABC$$

    $$\tan 30 = \dfrac{BC}{AB}=\dfrac{1}{\sqrt 3}$$

    $$\therefore BC=\dfrac{30}{\sqrt 3}$$

    $$\cos 30 = \dfrac{AB}{AC}=\dfrac{\sqrt{3}}{2}$$

    $$\therefore AC=\dfrac{60}{\sqrt 3}$$

    Total height,

    $$=BC+AC$$

    $$=\dfrac{30}{\sqrt 3}+\dfrac{60}{\sqrt 3}$$

    $$=30\sqrt{3}\ m$$

  • Question 3
    1 / -0
    The height of a tower is h and the angle of elevation of the top of the tower is $$\displaystyle \alpha $$ on moving a distance h/2 towards the tower, the angle of elevation becomes. $$\displaystyle \beta  $$. What is the value of$$\quad \cot { \alpha  } -\cot { \beta  } \quad $$
    Solution

    Let $$AO=h$$ be the tower O being the foot of it.

    Then $$\quad \angle OCA=\alpha \quad \& \quad \angle OBA=\beta ,\\ AO=h,\\ OC-OB=BC=\dfrac { h }{ 2 } \\ \therefore \quad \dfrac { OC }{ OA } =\cot { \alpha  } \quad and\quad \dfrac { OB }{ OA } =\cot { \beta  } .\\ \therefore \quad \cot { \alpha  } -\cot { \beta  } \\ =\dfrac { OC }{ OA } -\dfrac { OB }{ OA } \\ =\dfrac { OC-OB }{ AO } \\ =\dfrac { BC }{ AO } =\dfrac { \dfrac { h }{ 2 }  }{ h } =\dfrac { 1 }{ 2 } .\quad $$ 

  • Question 4
    1 / -0
    The ladder resting against a vertical wall is inclined at an angle of $${30}^{\circ}$$ to the ground. The foot of the ladder is $$7.5\text{ m}$$ from the wall. Find the length of the ladder.
    Solution
    Let the length of the ladder be $$\lambda .$$

    In $$\triangle ABC,$$
    $$\begin{aligned}{}\cos 30^\circ& = \frac{{7.5}}{\lambda}\\\frac{{\sqrt 3 }}{2} &= \frac{{7.5}}{\lambda}\\\lambda&= \frac{{15}}{{\sqrt 3 }}\\ &= 5\sqrt 3\\&\approx  8.66 \text{ m}\end{aligned}$$

    Hence, the length of the ladder is $$8.66\text{ m}.$$

  • Question 5
    1 / -0
    What is the angle of elevation of a vertical flagstaff of height $$100\sqrt 3m$$ from a point $$100m$$ from its foot.
    Solution
    Height of flagstaff (H) = $$100 \sqrt{3}$$
    Distance between the point and the flagstaff (D) = 100 m
    Let the angle of elevation be $$\theta$$
    Then,

    $$\tan \theta = \dfrac{D}{H}$$
    $$\tan \theta = \dfrac{100\sqrt{3}}{100}$$
    $$\tan \theta = \sqrt{3}$$
    $$\tan \theta = \tan 60^{\circ}$$
    $$\theta = 60^{\circ}$$

  • Question 6
    1 / -0
    A ladder $$20m$$ long is placed against a vertical wall of height $$10$$ metres. Find the distance between the foot of the ladder and the wall and also the inclination of the ladder to the horizontal.
    Solution
    Since, Hypotenuse$$\,=20m$$
    and Height=$$\,10m$$
    $$\therefore sin\theta\,$$$$=\dfrac{10}{20}$$

    $$\Rightarrow sin\theta\,$$$$=\dfrac{1}{2}$$
    But we know that
    $$sin30^{o}=\,$$$$\dfrac{1}{2}$$

    Hence, we can say that
    $$\theta=30^{o}$$
    Therefore,
    Base
    $$=20cos30^{o}m$$
    $$=20(\frac{\sqrt{3}}{2})$$
    $$=10(1.732)$$
    $$=17.32m$$

  • Question 7
    1 / -0
    The angle of elevation of the top of a tower from a distance $$100m$$ from its foot is $${30}^{o}$$. The height of the tower is:
    Solution
    Given Angle Of elevation $$30^{\circ}$$

    The distance from its foot is $$100m$$

    Consider $$\tan $$ of the given angle  

    $$\implies \tan \theta =\dfrac {Height}{Distance}$$

    $$\implies \tan 30=\dfrac {Height}{100}$$

    $$\implies \dfrac 1{ \sqrt 3} =\dfrac {Height}{100}$$

    $$\implies Height=\dfrac {100}{\sqrt 3}$$

  • Question 8
    1 / -0
    A tower is $$120\ m$$ high. Its shadow is $$x\ m$$ shorter when the sun's altitude is $$\displaystyle 60^{\circ}$$ than when it was $$45^{\circ}$$. Find $$x$$ correct to nearest metre
    Solution
    Let $$AB$$ be the tower and its shadows be $$BD$$ and $$BC$$ corresponding to the angle of elevations $$60^{\circ}$$ and $$45^{\circ}$$ respectively

    In $$\Delta ABC,$$
    $$ \tan 45^{\circ}=\dfrac{AB}{BC}$$

    $$\Rightarrow 1=\dfrac{120}{BC}$$

    $$\Rightarrow BC=120\:m$$

    In $$\Delta ABD,$$
    $$\tan 60^{\circ}=\dfrac{AB}{BD}$$

    $$\Rightarrow \sqrt{3}=\dfrac{120}{BD}$$

    $$\Rightarrow BD=40\sqrt{3}\ m$$

    Now,
    $$\begin{aligned}{}BC &= BD + CD\\120 &= 40\sqrt 3  + x\\x &= 120 - 40\sqrt 3 \\ &= 40\sqrt 3 (\sqrt 3  - 1)\\& \approx 51\;m\end{aligned}$$

  • Question 9
    1 / -0
    A 10 m long flagstaff is fixed on the top of a tower from a point on the ground the angles of elevation of the top and bottom of flagstaff are $$\displaystyle 45^{\circ}$$ and $$\displaystyle 30^{\circ}$$ respectively. Find the height of the tower.
    Solution

    Let $$AB$$ be the flagstaff and $$BC$$ be the tower 

    Let $$CD = x$$ m and $$BC = h$$ m

    In $$\displaystyle \Delta ACD,$$

    $$\tan 45^{\circ}=\dfrac{AC}{DC}$$

                  $$=\dfrac{h+10}{x}$$

    $$\displaystyle \Rightarrow 1=\frac{h+10}{x}$$

    $$\Rightarrow x=h+10$$          $$...(i)$$

    In  $$\displaystyle \Delta BCD,$$

    $$\tan 30^{\circ}=\dfrac{BC}{DC}$$

                   $$=\dfrac{h}{x}$$ 

    $$\displaystyle \Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{h}{x}$$

    $$\Rightarrow x=h\sqrt{3}=1.732h$$        $$...(ii)$$

    From $$(i)$$ and $$(ii),$$ 

    $$\Rightarrow 1.732 h = h + 10$$

    $$\Rightarrow 0.732h=10$$

    $$\Rightarrow h=\dfrac{10}{0.732}=13.66\: m$$

  • Question 10
    1 / -0
    The angle of depression of $$47$$ m high building from the top of a tower $$137$$ m high is $$\displaystyle 30^{\circ}$$. Calculate the distance between the building and the tower
    Solution
    Let $$AB$$ and $$CD$$ represent the tower and building respectively
    The angle of depression $$\displaystyle \angle XAD=30^{\circ}$$
    In $$\displaystyle \Delta ADE,DE=CB=x$$ $$\displaystyle \angle ADE=\angle XAD=30^{\circ}(alt.\angle s)$$
    $$AE = AB-EB  = AB - DC = (137 - 47) m = 90$$ m
    $$\displaystyle \therefore \tan 30^{\circ}=\frac{AE}{DE}$$
    $$\Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{90}{x}$$
    $$\Rightarrow x=90\sqrt{3}$$ m

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now