Self Studies

Some Applications of Trigonometry test - 32

Result Self Studies

Some Applications of Trigonometry test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angles of elevation of the top of a tower from two points at a distance, $$x$$ and $$y$$ meters from the base and in the same straight line with it are complementary. Find the height of the tower.

    Solution
    Let the height of the tower be $$h.$$

    In right $$\triangle ABC$$
    $$\tan \theta=\dfrac{h}{x}\quad \dots (i)$$

    In right $$\triangle ABD$$
    $$\tan(90−\theta)=\dfrac{h}{y}\quad \dots (ii)$$

    From $$(i)$$ & $$(ii)$$ we get,
    $$\tan \theta\times \tan(90-\theta)=\dfrac{h}{x}\times \dfrac{h}{y}$$
    $$\Rightarrow \tan\theta\cdot \cot\theta=\dfrac{h^2}{xy}$$
    $$\Rightarrow h^2=xy$$
    $$\Rightarrow\displaystyle h=\sqrt {xy}$$

    Hence, option $$A$$ is the correct answer.

  • Question 2
    1 / -0
    Two villages are 2 km apart. If the angles of depression of these villages when observed from a plane are around to be $$ \displaystyle 45^{\circ}$$ and $$60^{\circ} $$ respectively , then height of the plane in km is: 
    (Plane is between two villages)
    Solution

    Let $$PQ= h$$ m be a plane
     
    From right angled $$\displaystyle \bigtriangleup PAQ,$$

    $$\displaystyle \tan 45^{\circ}=\dfrac{PQ}{AQ}  $$

    $$\displaystyle \Rightarrow  1=\dfrac{h}{x}  $$

    $$\Rightarrow x=h$$        $$...(i)$$

    Again from right angled $$\displaystyle \bigtriangleup PBQ  $$

    $$\Rightarrow \tan 60^{\circ}=\dfrac{PQ}{QB}  $$  

    $$\Rightarrow \sqrt{3}=\dfrac{h}{2-x}  $$

    $$\Rightarrow  2\sqrt{3}-\sqrt{3}x=h  $$


    From equation $$(i)$$

    $$\Rightarrow  2\sqrt{3}-\sqrt{3}h=h  $$

    $$\Rightarrow h+\sqrt{3}h=2\sqrt{3}   $$

    $$\Rightarrow h(1+\sqrt{3})=2\sqrt{3}   $$

    $$\Rightarrow h=\dfrac{2\sqrt{3}}{1+\sqrt{3}}$$

    $$\Rightarrow h=\dfrac{2\sqrt{3}}{1+\sqrt{3}}\times \dfrac{1-\sqrt{3}}{1-\sqrt{3}}   $$

    $$\Rightarrow h=\displaystyle \frac{2\sqrt{3}-6}{1-3}$$

    $$\Rightarrow h=\dfrac{-2(3-\sqrt{3})}{-2}   $$

    $$\therefore\  h\displaystyle =(3-\sqrt{3})\ km    $$

  • Question 3
    1 / -0
    On the same side of a tower two objects are located. Observed from the top of the tower their angles of depression are $$\displaystyle 45^{0}$$ and $$\displaystyle 60^{0}$$. If the height of the tower is $$150\ m$$, the distance between the objects is
    Solution
    Let $$AB$$ be the tower and $$C$$ and $$D$$ be the point of object
    Given $$AB =150\ m$$ and $$\angle ACB=45^{0}$$ and $$ \angle ADB=60^{0}$$

    In $$\Delta BAD$$,
    $$\tan 60^{0}=\cfrac{AB}{AD}$$
    $$\Rightarrow \sqrt{3}= \cfrac{150}{AD}$$
    $$\Rightarrow AD=\cfrac{150}{\sqrt{3}} \text{ m}$$

    In triangle $$BAC$$,
    $$\tan 45^{0}=\cfrac{AB}{AC}$$
    $$\Rightarrow 1=\cfrac{150}{AC}$$
    $$\Rightarrow AC=150 \text{ m}$$

    $$\therefore CD=AC-AD$$
    $$=150-\cfrac{150}{\sqrt{3}}$$
    $$=\left [ \cfrac{150(\sqrt{3}-1)}{\sqrt{3}} \right ]$$
    $$=50(3-\sqrt{3})$$
    $$=50\times 1.27$$
    $$=63.5$$ $$\text{m}$$

  • Question 4
    1 / -0
    A man standing at a point C is watching the top of a tower which makes an angle of elevation of $$\displaystyle 30^{0}$$ with the man's eye. The man walks some distance towards the tower to watch its top, the angle of elevation becomes $$\displaystyle 60^{0}$$. What is the distance between the base of the tower and the point C?
    Solution
    One of AB, AD and CD must have been given. 
    So the data is inadequate.

  • Question 5
    1 / -0
    $$AB$$ is a straight road leading to $$C$$, the foot of a tower. $$A$$ is at a distance $$125\text{ m}$$ from $$B$$ and $$B$$ at $$75\text{ m}$$ meters from $$C$$. If the angle of elevation of the tower at $$B$$ be double the angle of elevation at $$A$$, then the find the value of $$\cos2\alpha,$$
    Solution
    In $$\triangle APB,$$
    $$ \angle CBP=\angle A+\angle APB    $$ 
    $$\Rightarrow2\alpha  =\alpha +\angle APB    $$
    $$\Rightarrow\angle APB=  \alpha   $$

    This implies that $$AB=BP=125 m$$ as sides opposite to equal angles in a triangle are equal.

    In $$\triangle BCP,$$
    $$ \displaystyle \cos 2\alpha =\frac{75}{125} $$
    $$ \Rightarrow \cos 2\alpha =\dfrac{3}{5} $$ 

  • Question 6
    1 / -0
    The angles of elevation of a tower from a  point on the ground is $$ \displaystyle 30^{\circ} $$ . At a point on the horizontal line passing through the foot of the tower and $$100$$ meters closer to it than the previous point, if the angle of elevation is found to be $$ \displaystyle 60^{\circ} $$ , then height  of the tower is 
    Solution
    Let $$AB=h$$ be the height of the tower, and let $$AD=x$$ m 

    From right angled $$ \displaystyle \bigtriangleup ABD  $$

    $$ \displaystyle \tan 60^{\circ}=\frac{AB}{AD}  $$ 

    or $$ \displaystyle \sqrt{3}=\frac{h}{x}  $$  or $$   x= \dfrac{h}{\sqrt{3}}  $$ 

    From right angled $$ \displaystyle \bigtriangleup BCA $$

    $$ \displaystyle \tan 30^{\circ}=\frac{AB}{CA} $$ 

    or $$ \displaystyle \frac{1}{\sqrt{3}}=\frac{h}{100+x} $$

    or $$ \displaystyle h=\frac{100+x}{\sqrt{3}}=\frac{100+\dfrac{h}{\sqrt{3}}}{\sqrt{3}} $$

    or $$ \displaystyle \frac{2}{\sqrt{3}}h=100 $$

    or $$ \displaystyle \therefore  h=50\sqrt{3}m $$

  • Question 7
    1 / -0
    From a point $$p$$ on a level ground the angle of elevation of the top of a tower is $$\displaystyle 30^{0}$$ If the tower is $$100\ m$$ high the distance of point $$p$$ from the foot of the tower is
    Solution
    Let $$AB$$ be the tower then $$\displaystyle \angle APB=30^{0}$$ and $$\displaystyle AB=100m$$

    $$\displaystyle \frac{AB}{AP}=\tan 30^{0}\\\ \ \ \ \ \ \ \ =\dfrac{1}{\sqrt{3}}$$

    $$\displaystyle \Rightarrow AP=\left ( AB\times \sqrt{3} \right )=100\sqrt{3}m$$

    $$\displaystyle =\left ( 100\times 1.73 \right )m$$

    $$\displaystyle = 173m$$

  • Question 8
    1 / -0
    The angle of elevation of the sun when the length of the shadow of a tree is $$\displaystyle \sqrt{3}$$ times the height of the tree is:
    Solution
    Let $$AB$$ be the tree and $$AC$$ be its shadow.
    Also, $$AC=\sqrt3AB$$.
    Let the angle of elevation of the sun $$=\displaystyle \angle ACB=\theta $$
    Then in $$\triangle ABC,$$ 

    $$\displaystyle \tan \theta = \frac{AB}{AC}=\dfrac{1}{\sqrt{3}} $$          {$$\because AC=\sqrt3AB$$}

    $$ \tan 30^o =\dfrac{1}{\sqrt{3}}$$

    $$\displaystyle \Rightarrow \theta =30^{0}$$

  • Question 9
    1 / -0
    Two ships are sailing in the sea on the two sides  of a lighthouse The angles of elevation of the top of the lighthouse as observed from the two 
    ships are $$\displaystyle 30^{0}$$ and $$\displaystyle 45^{0}$$ respectively If the lighthouse is $$100$$ m high the distance between the two ships is
    Solution
    Let $$AB$$ be the height of lighthouse and $$C$$ and $$D$$ be the position of the ships.
    Given $$AB=100$$ m and $$\angle ACB=30^{0}$$$$\angle ADB=45^{0}$$
    In $$\Delta BCA$$
    $$\dfrac{AB}{AC}=tan 30^{0}\\\ \ \ \  \ \ \ =\dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow AC=\sqrt{3}AB\\\ \ \ \ \ \ \ \ \ \ =100\sqrt{3}$$
    In $$\Delta BAD$$
    $$\dfrac{AB}{AD}=tan 45^{0}\\\ \ \ \ \ \ \ \ =1$$
    $$\Rightarrow AD=AB=100 m$$
    $$\therefore CD=AC+AD\\=100\sqrt{3}+100\\=100(\sqrt{3}+1)\\=100(1.73+1)\\=273 m$$

  • Question 10
    1 / -0
    An observer 1.6m tall is $$\displaystyle 20\sqrt{3}$$m away from a tower The angle of elevation from his eye to the top of the tower is $$\displaystyle 30^{0}$$ The height of the tower is
    Solution
    Let $$AB$$ be the observer and $$CD$$ tower
    Draw $$BE$$ perpendicular to $$CD$$
    Then $$CE=AB=1.6  \ m$$
    And $$BE=AC=$$ $$20\sqrt{3}$$ m
    Then right angle  triangle DEB
    $$\therefore tan 30^{o}=\frac{DE}{BE}$$
    $$\Rightarrow \dfrac{1}{\sqrt{3}}=\dfrac{DE}{20\sqrt{3}}$$
    $$\Rightarrow DE=20\sqrt{3}$$m
    Then $$CD=CE+DE=1.6+20=21.6\ m$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now