Self Studies

Some Applications of Trigonometry test - 33

Result Self Studies

Some Applications of Trigonometry test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle of elevation of a ladder leaning against a wall is $$\displaystyle 60^{\circ}$$ and the foot of the ladder is $$4.6\ m$$ away from the wall The length of the ladder is
    Solution
    Consider the given figure. Let $$AC$$ denote the length of the ladder and $$AB$$ denote the wall. Now

    $$cos60^{\circ}=\dfrac{BC}{AC}$$

    $$AC=\dfrac{BC}{cos\ 60^{\circ}}$$

    $$AC=BC.sec\ 60^{\circ}$$

            $$=4.6\times 2$$
            $$=9.2$$
    Hence the length of the ladder is $$9.2\ m$$.

  • Question 2
    1 / -0
    The angle of elevation of the top of a tower from a certain point is $$\displaystyle 30^{0}$$ If the observer moves 20m towards the tower the angle of elevation of the top of the tower increases by $$\displaystyle 15^{0}$$ The height of the tower is
    Solution
    Let AB be the tower and C and D be the point of observation 
    Given  CD =20 m And $$\angle BCA=30^{0}$$ and $$ \angle BDA=30+15=45^{0}$$
    Let height of tower is h
    In triangle BAD
    $$tan 45^{0}=\frac{AB}{AD}\Rightarrow 1=\frac{h}{AD}\Rightarrow AD=h$$
    In triangle BAC
    $$tan 30^{0}=\frac{AB}{AC}$$ ( AC=CD+AD)
    $$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{20+h}$$
    $$\Rightarrow \sqrt{3}h=20+h$$$$\Rightarrow \sqrt{3}h-h=20$$
    $$\Rightarrow h(1.732-1)=20$$
    $$\Rightarrow h=\frac{20}{0.732}=27.3$$

  • Question 3
    1 / -0
    A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly towards it If it takes $$12$$ minutes for the angle of depression to change from $$\displaystyle 30^{0}$$ to $$\displaystyle 45^{0}$$ how soon after this will the car reach the observation tower?
    Solution
    Let AB be the tower and C and D be the point of positions of two cars
    Given $$\angle ACB=45^{0}$$$$\angle ADB=30^{0}$$
    Let AB=h ,CD=x and AC=y
    In $$\Delta ABC$$
    $$tan45^{0}=\frac{AB}{AD}$$
    $$\Rightarrow 1=\frac{AB}{AD}$$
    $$\Rightarrow AB=AD\Rightarrow y=h$$
    In $$ABD$$
    $$tan 30^{0}=\frac{AB}{AD}$$
    $$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+y}$$
    $$\Rightarrow x+y=\sqrt{3}h $$
    $$\therefore x=(x+y)-y=(\sqrt{3})h-h=h(\sqrt{3}-1)$$
    So car cover distance $$h(\sqrt{3}-1)$$ in 12 seconds
    Then car cover distance h in=$$\left [ \frac{12\times h}{h(\sqrt{3}-1)} \right ]=\frac{12}{0.73}=16 min 23 sec$$

  • Question 4
    1 / -0
    If the height of a pole is $$\displaystyle 2\sqrt{3}$$ metres and the length of its shadow is 2 metres then the angle of elevation of the sun is equal to
    Solution
    Height of a pole is $$2\sqrt { 3 } $$

    length of its shadow is $$2$$ metre

    Let ABC be a triangle where AB be $$2\sqrt { 3 } $$ height of a pole

    AC be $$2$$ metre length of shadow

    Angle of elevation of the sun will be 
    $$\tan { \theta = } \dfrac { AB }{ AC } =\dfrac { 2\sqrt { 3 }  }{ 2 } =\sqrt { 3 } $$

    $$\tan { { 60^ o }  } =\sqrt { 3 } $$

    Angle of elevation of the sun is equal to $$ { 60^o } $$

  • Question 5
    1 / -0
    If a flag-staff 6 metres high placed on the top pf a tower throws a shadow of $$\displaystyle 2\sqrt{3}$$ metres along the ground then the angle that the sun makes with the ground is
    Solution
    OA and AB be the shadows of the tower OP and the flag-staff PQ respectively on the grounds Let the sum makes an angle $$\displaystyle \theta $$ with the ground
    $$\displaystyle AB=2\sqrt{3};OA=x;OP=h;PQ=6$$
    In triangles OAP and OBQ We have
    $$\displaystyle \tan \theta =\frac{h}{x}$$ and $$\displaystyle \tan \theta =\frac{h+6}{x+2\sqrt{3}}$$
    $$\displaystyle \Rightarrow \frac{h}{x}=\frac{h+6}{x+2\sqrt{3}}$$
    $$\displaystyle \Rightarrow x=\frac{h}{\sqrt{3}}$$
    or $$\displaystyle \frac{h}{x}=\tan \theta =\sqrt{3}$$ so  $$\displaystyle \theta=60^{0} $$

  • Question 6
    1 / -0
    If the angles of elevaton of the top of a tower from two points distance s and t $$\displaystyle \left ( s> t \right )$$ from its foot are $$\displaystyle 30^{0}$$ and $$\displaystyle 60^{0}$$ respectively then the height of the tower is
    Solution
    $$AB$$ is the tower $$S$$ and $$T$$ be the points of observation such that $$AS = s$$ and $$AT = t$$
    $$\displaystyle \frac{AB}{AT}=\tan 30^{0}\Rightarrow AB=\frac{t}{\sqrt{3}}$$
    $$\displaystyle \frac{AB}{AS}=\tan 60^{0}\Rightarrow AB=s\sqrt{3}$$
    $$\displaystyle \therefore AB^{2}=st$$ or $$\displaystyle AB=\sqrt{st}$$

  • Question 7
    1 / -0
    A man standing on the bank of the river observes that the angle subtended by a tree on the opposite bank is $$\displaystyle 60^{0}$$. When he retires $$36$$ metres from the bank he finds the angle to be $$\displaystyle 30^{0}$$. The breadth of the river is
    Solution
    Let the breadth of the river be AC = 'x' metres
    Clearly $$\displaystyle \tan 30^{0}=\frac{AB}{AD}=\frac{h}{x+36}$$ and
    $$\displaystyle \tan 60^{0}=\frac{AB}{AD}=\frac{h}{x}$$
    $$\displaystyle \Rightarrow \frac{\tan 60^{0}}{\tan 30^{0}}=\frac{h}{x}\div \frac{h}{x+36}$$
    $$\displaystyle \Rightarrow 3=\frac{x+36}{x}$$
    $$\displaystyle \Rightarrow x=18m$$

  • Question 8
    1 / -0
    A man on the top of a rock lying on a seashore observes a boat coming towards it. If it takes $$10$$ minutes for the angles of depression to change from $$\displaystyle 30^{\circ}$$ to $$\displaystyle 60^{\circ}$$ how soon will the boat reach the shore?
    Solution

    AB is the rock C and D be the two positions of the boat
    Given:
    $$\angle EAC=30^{\circ}$$ and $$\angle EAD=60^{\circ}$$
    Now,
    $$\angle ADB=EAD$$    $$[\because AE \parallel BC, AD~ \text{is transversal}, ~\angle ADB$$ and $$\angle EAD $$ are alternate interior angles $$]$$
    $$\implies \displaystyle \angle ADB=60^{\circ}$$
    $$\angle EAC=ACB$$    $$[\because AE \parallel BC, AC~ \text{is transversal}, ~\angle EAC$$ and $$\angle ACB $$ are alternate interior angles $$]$$
    $$\implies \displaystyle \angle ACB=30^{\circ}$$
    Let $$CD=x, ~DB=y$$
    From $$\triangle ABC$$
    $$\displaystyle \tan 30^{0}=\frac{AB}{x+y}=\frac{1}{\sqrt{3}}$$
    $$\displaystyle \Rightarrow AB=\frac{x+y}{\sqrt{3}}$$
    From $$\triangle ABD$$
    $$\displaystyle \tan 60^{0}=\frac{AB}{y}\Rightarrow AB=\sqrt{3}y$$
    $$\displaystyle \therefore \frac{x+y}{\sqrt{3}}=\sqrt{3}y$$ or $$\displaystyle \frac{x}{2}=y$$
    The boat takes $$10$$ minutes to cover distance $$x,$$
    so it will take $$5$$ minutes to cover $$\displaystyle \frac{x}{2}$$
    $$\displaystyle \therefore $$ Time to reach $$\displaystyle B=\left ( 10+5 \right )$$ min $$= 15$$ Minutes from point $$C$$

  • Question 9
    1 / -0
    The angle of elevation of the top of an incomplete vertical pillar at a horizontal distance of $$100\ m$$ from its base is $$\displaystyle 45^{o}$$ If the angle of elevation of the top of the complete pillar at the same point is to be $$\displaystyle 60^{o}$$ then the height of the incomplete pillar is to be increased by
    Solution
    Let BC be the incomplete and BD be the complete pillar In Triangles ABC and ABD we have 
    Given $$BC=100 $$m,
    And $$\angle CAB=45^{0}$$$$\angle DAB=60^{0}$$
    Let $$CD= x$$ m
    In $$\Delta ABC$$
    $$tan 45^{o}=\frac{BC}{AB}$$
    $$\Rightarrow 1=\frac{BC}{100}$$
    $$\Rightarrow BC=100 m$$
    In $$ABD$$
    $$tan60^{0}=\frac{AD}{AB}$$
    $$\Rightarrow \sqrt{3}=\frac{BD}{100}$$
    $$\Rightarrow BD=100\sqrt{3}$$m
    Then $$BD=BC+CD=100+x$$
    $$\therefore 100+x=100\sqrt{3}$$
    $$\Rightarrow x=100(\sqrt{3}-1)$$m

  • Question 10
    1 / -0
    The length of the shadow of a person is x when the angle of elevation of the sun is $$\displaystyle 45^{0}$$. If the length of the shadow increased by $$\displaystyle \left ( \sqrt{3}-1 \right )x$$ then the angle of elevation becomes
    Solution
    Let $$AB$$ be the height of the person, $$AC$$ and $$AD$$ be his shadows at two instants.

    $$\displaystyle AC=x$$ 
    $$\displaystyle AD= AC+CD =x+\left ( \sqrt{3}-1 \right )x$$$$\displaystyle =\sqrt{3}x$$
     
    and $$\displaystyle \angle ACB=45^{0}$$

    $$\displaystyle \frac{AB}{AC}=\tan 45^{0}=1\\ \Rightarrow AB=AC=x$$

    $$\displaystyle \tan \theta =\frac{AB}{AD}\\ =\dfrac{x}{\sqrt{3x}}\\ =\dfrac{1}{\sqrt{3}}$$

    $$\displaystyle \Rightarrow \theta =30^{0}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now