Self Studies

Some Applications of Trigonometry test - 34

Result Self Studies

Some Applications of Trigonometry test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The top of a $$15$$ metre high tower makes an angle of elevation of $$\displaystyle 60^{0}$$ with the bottom of an electric pole and angle of elevation of $$\displaystyle 30^{0}$$ with the top of the pole. What is the height of the electric pole?
    Solution
    Let $$AB$$ be the tower and $$CD$$ be the electric pole
    Then $$\displaystyle \angle ACB=60^{0},\angle EDB=30^{0}$$ and $$\displaystyle AB=15$$ m
    Let $$\displaystyle CD=h.$$ Then $$\displaystyle BE=\left ( AB-AE \right )$$
    $$\displaystyle =\left ( AB-CD \right )=\left ( 15-h \right )$$
    We have $$\displaystyle \frac{AB}{AC}=\tan 60^{0}=\sqrt{3}$$
    $$\displaystyle \Rightarrow AC=\frac{AB}{\sqrt{3}}=\frac{15}{\sqrt{3}}$$
    And $$\displaystyle \frac{BE}{DE}=\tan 30^{0}=\frac{1}{\sqrt{3}}$$
    $$\displaystyle \Rightarrow DE=\left ( BE\times \sqrt{3} \right )$$ $$\displaystyle =\sqrt{3}\left ( 15-h \right )$$
    $$\displaystyle \Rightarrow 3h=\left ( 45-15 \right )$$
    $$\Rightarrow h=10$$ m

  • Question 2
    1 / -0
    From the top of the cliff $$150\ m$$ high the angles of depression of the top and bottom of a tower are observed to be $$\displaystyle 30^{\circ}$$ and $$\displaystyle 60^{\circ}$$ respectively. The height of the tower is
    Solution
    $$\displaystyle BF=\left ( 150-x \right )m.$$ Let $$\displaystyle AC=y$$
    $$\displaystyle \tan 30^{0}=\frac{150-x}{y}$$
    $$\displaystyle \tan 60^{0}=\frac{150}{y}$$
    $$\displaystyle \Rightarrow y=\left ( 150-x \right )\sqrt{3}=\frac{150}{\sqrt{3}}$$
    $$\displaystyle \therefore 150-x=50$$ or $$\displaystyle x=100\ m$$

  • Question 3
    1 / -0
    A tree is broken by the wind and now its upper part touches the ground at a point $$10$$ m from the foot of the tree and makes an angle of $$\displaystyle 60^{0}$$ with the ground. The entire length of the tree is:
    Solution
    Let say the Length of the tree $$ = BT = BC + CT$$ and $$CT = CA$$ when the tree is broken.

    Given: $$AB = 10m$$

    In $$\triangle ABC$$,

    $$\tan60^o = \dfrac{BC}{AB} $$ ............(1)

    Also, $$sec\  60^o = \dfrac{AC}{AB}$$ ...................(2)


    $$ BT= $$ $$BC + AC$$

           $$=$$ $$AB \displaystyle \tan 60^{0}+AB\ \text{sec} 60^{0}$$       {Using (1) and(2)}

           $$= AB\sqrt3 + AB\sec60^o$$

           $$\displaystyle =AB\left ( \sqrt{3}+ 2 \right ) =10\left ( 1+\frac{2}{\sqrt3} \right )\sqrt{3}m$$                             

            $$\displaystyle =\left ( 10+\frac{20}{\sqrt3} \right )\sqrt{3}m$$

  • Question 4
    1 / -0
    A flagstaff $$10\ m$$ high stands at the center of a equilateral triangle which is horizontal at the top of the flagstaff. Each side subtends at an angle of $$\displaystyle 60^{o}$$. The length of each side of the triangle is:
    Solution


    $$\Rightarrow$$  Considering Right angle $$\triangle ADC$$ we have,
    $$\Rightarrow$$  $$\tan 60^o=\dfrac{AD}{DC}$$
    $$\Rightarrow$$  $$\sqrt{3}=\dfrac{10}{DC}$$

    $$\Rightarrow$$  $$DC=\dfrac{10}{\sqrt{3}}$$
    $$\Rightarrow$$  $$DC=\dfrac{10}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}$$
    $$\therefore$$  $$DC=\dfrac{10\sqrt{3}}{3}$$
    $$\Rightarrow$$  $$BC=2\times DC$$
    $$\therefore$$  $$BC=2\times \dfrac{10\sqrt{3}}{3}$$
    $$\therefore$$  $$BC=\dfrac{20\sqrt{3}}{3}$$
    $$\therefore$$  The length of each side of the triangle is $$\dfrac{20}{\sqrt{3}}\,m$$

  • Question 5
    1 / -0
    If the angle of elevation of an object from a point $$100 \text{ m}$$ above a lake is found to be $$\displaystyle 30^{\circ}$$ and the angle of depression of its image in the lake is $$\displaystyle 45^{\circ}$$, then the height of the object above the lake is
    Solution
    Let $$AB$$ the surface of the lake $$O$$ be the point of observation $$P$$ be the object and $$P'$$ be its image.

    Let the distance of object $$P$$ above lake be $$x.$$ So, it will be below the lake by same distance as they are mirror images.
    $$PE=P'E=x$$
    $$PD=x-100$$
    $$P'D=x+100$$
    $$OC=DE=100 \text{ m}$$

    In $$\triangle OPD,$$
    $$\tan 30^{\circ}=\dfrac{PD}{OD}$$
    $$\Rightarrow\dfrac{1}{\sqrt3}=\dfrac{x-100}{OD}$$
    $$\Rightarrow OD=\sqrt3 (x-100)\text{ m}$$

    In $$\triangle OP'D,$$
    $$\begin{aligned}{}\tan {45^\circ } &= \frac{{P'D}}{{OD}}\\OD& = P'D\\\sqrt 3 (x - 100) &= x + 100\\x& = \frac{{100(\sqrt 3  + 1)}}{{\sqrt 3  - 1}}\\ &= 100(2 + \sqrt 3 ){\text{ m}}\end{aligned}$$

    Hence, the distance of the object above the lake is $$100(2+\sqrt3)\text{ m}.$$

  • Question 6
    1 / -0
    The angle of elevation $$\displaystyle \theta $$ of a vertical tower from a point on the ground is such that its tangent is $$\displaystyle \frac{5}{12}$$. On walking $$192$$ meters towards the tower in the same straight line the tangent of angle of elevation $$\displaystyle \phi $$ is found to be $$\displaystyle \frac{3}{4}$$. Find the height of the tower
    Solution
    In $$\displaystyle \Delta PQR,\tan \theta =\frac{h}{192+x}=\frac{5}{12}$$
    $$\displaystyle \Rightarrow x=\frac{1}{5}\left ( 12h-960 \right )$$      ...(i)
    In $$\displaystyle \Delta PQS,\tan \phi =\frac{h}{x}=\frac{3}{4}$$
    $$\displaystyle \Rightarrow x=\frac{4h}{3}$$                                      ...(ii)
    From (i) and (ii), we get
    $$\displaystyle \frac{4h}{3}=\frac{1}{5}\left ( 12h-960 \right )$$
    $$\displaystyle \Rightarrow h=180$$
    $$\displaystyle \therefore $$ The height of the tower is 180 m

  • Question 7
    1 / -0
    From the top of a lighthouse, the angles of depression of two stations on opposite sides and $$a$$ distance apart are $$\displaystyle \alpha $$ and $$\displaystyle \beta $$. The height of the lighthouse is:
    Solution
    Let Height of Light House be $$h=AD$$, as shown in the figure above.
    and $$\angle ABD=\alpha\ (Given)$$
    $$\angle ACD =\beta\ (Given)$$

    Now, in $$\triangle ABD,\ BD=h\cot \alpha\quad \quad \left[\cot \theta=\dfrac {\text{Adjacent Side}}{\text{Opposite Side}} \right]$$

    Also, in $$\triangle ADC, \ CD=h\cot\beta\quad \quad \left[\cot \theta=\dfrac {\text{Adjacent Side}}{\text{Opposite Side}} \right]$$

    Given that, $$BC=a$$

    $$\therefore \ a=BC=BD+CD\\$$
    $$\Rightarrow a=h\cot\alpha+h\cot\beta\\$$
    $$\Rightarrow a=h(\cot\alpha+\cot\beta)\\$$
    $$\therefore \  h=\dfrac{a}{\cot\alpha+\cot\beta}\\$$

    Hence, option B is correct.

  • Question 8
    1 / -0
    A boat is rowed away from a cliff $$150$$ m high At the top of the the cliff the angle of depression of the boat change from $$\displaystyle 60^{0}$$ to $$\displaystyle 45^{0}$$ in $$2.5$$ minutes The speed of the boat (in m/sec) is
    Solution
    Let AB be cliff C and D be two position of the boat
    $$\displaystyle AB=150m,\angle ACB=60^{0} and\angle ADB=45^{0}$$

    $$\displaystyle AC=AB\cot 60^{0}$$

    $$\displaystyle \Rightarrow AC=\frac{150}{\sqrt{3}}m$$

    $$\displaystyle AD=AB\cot 45^{0}$$

    $$\displaystyle \Rightarrow AD=150m$$

    $$\displaystyle \therefore CD=150-\frac{150}{\sqrt{3}}$$

    $$\displaystyle =\frac{150}{\sqrt{3}}\left ( \sqrt{3}-1 \right )$$ which is covered in 150sec.

    $$\displaystyle \therefore $$ Speed of the boat in m/sec

    $$\displaystyle =\dfrac{150\left ( \sqrt{3-1} \right )}{\sqrt{3}\times 150}$$

    $$=\dfrac{\sqrt{3}-1}{\sqrt{3}}$$

    $$=\displaystyle 1-\frac{1}{\sqrt{3}}$$
  • Question 9
    1 / -0
    An aeroplane flying at a height of $$300\ metre$$ above the ground passes vertically above another plane at an instant when the angles of elevation of the two planes from the same point on ground are $$\displaystyle 60^{\circ}$$ and $$\displaystyle 45^{\circ}$$ respectively. The height of the lower plane above the above the ground in meters is
    Solution
    $$P$$ and $$Q$$ are positions of planes.
    From $$\displaystyle \Delta OMP;MP=300\ m$$
    $$\displaystyle OM=MP\cot 60^{0}=300\times \dfrac{1}{\sqrt{3}}\ m$$
    $$\displaystyle =100\sqrt{3}$$
    In $$\displaystyle \Delta OMQ,MQ=OM$$
    Height of the lower plane,$$ MQ = OM = 100\sqrt{3}\ m$$

  • Question 10
    1 / -0
    A flagstaff $$5$$ m high stands on a building $$25$$ m high. As observed from a point at a height of $$30$$ m, the flagstaff and the building subtend equal angles. The distance of the observer from the top of the flagstaff is
    Solution
    OB is the bisector of DOAC of DAOC
    $$\displaystyle \therefore \frac{OC}{OA}=\frac{BC}{AB}=\frac{x}{\sqrt{x^{2}+30^{2}}}=\frac{5}{25}$$
    $$\displaystyle \Rightarrow x=\frac{30}{\sqrt{24}}=\frac{30}{2\sqrt{6}}$$
    $$\displaystyle \therefore x=5\sqrt{\frac{3}{2}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now