Self Studies

Some Applications of Trigonometry test - 36

Result Self Studies

Some Applications of Trigonometry test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A man on the top of a rock observed a boat coming towards the rock with a uniform speed. It takes $$15$$ minutes for the angle of depression to change from $$\displaystyle 60^{\circ}$$ to $$\displaystyle 30^{\circ}$$ then what time will the boat take to reach the shore?
    Solution
    Let, the Height of the Rock be $$h$$
    so, $$tan30^o=\dfrac{h}{BD}\Rightarrow BD=h\sqrt3 \\tan60^o=\dfrac {h}{BC}\Rightarrow BC=\dfrac{h}{\sqrt3}$$

    Now, Distance travelled by Boat in 15 minutes $$=h\sqrt3-\dfrac{h}{\sqrt3}$$

    $$\Rightarrow v=\dfrac{h\sqrt3-\dfrac{h}{\sqrt3}}{15}\Rightarrow v=\dfrac{2h}{15\sqrt3}$$

    Now to reach the Shore it has to travel Distance $$\dfrac{h}{\sqrt3}$$ in Time $$t$$

    $$\Rightarrow t=\dfrac{\dfrac{h}{\sqrt3}}{\dfrac{2h}{15\sqrt3}}=7\dfrac12 \ minutes$$

  • Question 2
    1 / -0
    The height of a tower is $$100 \sqrt3$$. The angle of elevation of its top from a point $$100 m$$ away from its foot(base) is ______.

    Solution

    $$AB =$$ tower, $$O$$ is the point of observation.

    Given that height of the tower is $$100$$$$\sqrt3$$

    $$\therefore$$ $$AB = 100$$$$\sqrt3$$, $$OA = 100\ m$$

    $$\therefore$$ $$\tan$$ $$\theta$$ = $$\displaystyle{\frac{AB}{OA} = \frac{100\sqrt3}{100}}$$ $$=$$ $$\sqrt3$$

    $$\therefore \theta$$ $$= 60$$ $$^o$$

    $$\therefore$$ Angle of elevation is $$60^o$$. 

    So, option C is correct.

  • Question 3
    1 / -0
    If the given object is above the level of the observer, then the angle by which the observer raises his head is called _____. 
    Solution
    If the given object is above the level of the observer, then the angle by which the observer raises his head is called angle of elevation. 
  • Question 4
    1 / -0
    In case of angle of depression the observer has to look _____ to view the object. 
    Solution
    In case of angle of depression, the observer has to look down to view the object. 

  • Question 5
    1 / -0
    From a point at a height $$h$$ m above a lake, the angle of elevation of a cloud is $$\displaystyle \alpha $$ and the angle of depression of its reflection in the lake is $$\displaystyle \beta $$. The height of the cloud above the surface of the lake is 
    Solution


    Let $$H$$ be the height of the cloud from the point above $$h\text{ m}$$ from the lake surface.
    Now the distance of the reflection from the lake surface be $$H+h \text{ m}$$
    Now, In $$\triangle CDE,$$
    $$\Rightarrow \tan { \alpha  } =\dfrac { DE }{ CE } $$
    $$\Rightarrow CE=\dfrac { DE }{ \tan { \alpha  }  } =\dfrac { H }{ \tan { \alpha  }  } \longrightarrow \left( 1 \right) $$
    In $$\triangle CED',$$
    $$\Rightarrow \tan { \beta  } =\dfrac { ED' }{ CE } $$
    $$\Rightarrow CE=\dfrac { ED' }{ \tan { \beta  }  } =\dfrac { H+2h }{ \tan { \beta  }  } \longrightarrow \left( 2 \right) $$
    From equation $$ \left( 1 \right)\;\&\; \left( 2 \right),$$ we get
    $$\Rightarrow \dfrac { H }{ \tan { \alpha  }  } =\dfrac { H+2h }{ \tan { \beta  }  } $$
    $$\Rightarrow H\tan { \beta  } =H\tan { \alpha  } +2h\tan { \alpha  } $$
    $$\Rightarrow H\left( \tan { \beta  } -\tan { \alpha  }  \right) =2h\tan { \alpha  } $$
    $$\Rightarrow H=\dfrac { 2h\tan { \alpha  }  }{ \tan { \beta  } -\tan { \alpha  }  } $$
    Now, height of the cloud above the lake surface
    $$\Rightarrow H+h=\dfrac { 2h\tan { \alpha  }  }{ \tan { \beta  } -\tan { \alpha  }  } +h$$
                       $$=\dfrac { 2h\tan { \alpha  } +h\tan { \beta  } -h\tan { \alpha  }  }{ \tan { \beta  } -\tan { \alpha  }  } $$
                       $$=\dfrac { h\left( \tan { \alpha  } +\tan { \beta  }  \right)  }{ \tan { \beta  } -\tan { \alpha  }  } $$
                       $$=h\left[ \dfrac { \dfrac { \sin { \alpha  }  }{ \cos { \alpha  }  } +\dfrac { \sin { \beta  }  }{ \cos { \beta  }  }  }{ \dfrac { \sin { \beta  }  }{ \cos { \beta  }  } -\dfrac { \sin { \alpha  }  }{ \cos { \alpha  }  }  }  \right] $$
                       $$=h\left[ \dfrac { \dfrac { \sin { \alpha  } \cos { \beta  } +\cos { \alpha  } \sin { \beta  }  }{ \cos { \alpha \cos { \beta  }  }  }  }{ \dfrac { \sin { \beta  } \cos { \alpha  } -\cos { \beta  } \sin { \alpha  }  }{ \cos { \alpha \cos { \beta  }  }  }  }  \right] $$
    Hence, the answer is $$h\left[ \dfrac { \dfrac { \sin { \alpha  } \cos { \beta  } +\cos { \alpha  } \sin { \beta  }  }{ \cos { \alpha \cos { \beta  }  }  }  }{ \dfrac { \sin { \beta  } \cos { \alpha  } -\cos { \beta  } \sin { \alpha  }  }{ \cos { \alpha \cos { \beta  }  }  }  }  \right]$$  $$=\displaystyle \frac{h \sin \left ( \alpha +\beta \right ) }{\sin \left (\beta -\alpha \right )}m$$

  • Question 6
    1 / -0
    The angles of depression of the top and the bottom of a $$10\ m$$ tall building observed from the top of a tower are $$\displaystyle 30^{0} $$ and  $$\displaystyle 45^{0}$$ respectively. Find the height of the tower  (in $$m$$)
    Solution
    Let the height of the tower be $$H$$

    we can see that, $$BCDE$$ is a rectangle
    so, $$BE=CD=10\\ \&\ BC=DE$$

    Also, we can see that, $$H=AC+CD\Rightarrow H=AC+10\Rightarrow AC=H-10$$

    Now, in $$\triangle ADE$$
    $$\tan45^o=\dfrac{AD}{DE}\Rightarrow 1=\dfrac{AD}{DE}\Rightarrow AD=DE\Rightarrow DE=H\\ $$

    $$\therefore BC=DE=H $$

    Now, in $$\triangle ABC$$
    $$\tan30^o=\dfrac{AC}{BC}\Rightarrow \dfrac{1}{\sqrt3}=\dfrac{H-10}{H}\Rightarrow H=\sqrt3H-10\sqrt3\Rightarrow 10\sqrt3=(\sqrt3-1)H\\ \Rightarrow H=\dfrac{10\sqrt3}{\sqrt3-1}=\dfrac{10\sqrt3*(\sqrt3+1)}{(\sqrt3-1)(\sqrt3+1)}=5\sqrt3(\sqrt3+1)=15+5\sqrt3$$

    Therefore, Answer is $$15+5\sqrt3$$

  • Question 7
    1 / -0
    From the foot of a tower, the angle of elevation of the top of a column is 60$$^{\circ}$$ and from the top of the tower the angle of elevation is 30$$^{\circ}$$. If the height of the tower is 25 m, the height of the column is _____ 
    Solution
    Let $$AB$$ be the tower and $$CD$$ be the column. 
    Then $$AB = 25$$ m. $$\angle EBD = 30^{\circ}$$ and $$\angle CAD = 60^{\circ}$$
    $$CE = AB = 25$$ m,
    Let $$ED = x$$ m

    $$ \cot 30^{\circ}$$ = $$\frac{BE}{ED} $$

    $$ \dfrac{BE}{x} = \sqrt{3} $$

    $$BE = \sqrt{3 }x$$

    Also, $$\cot 60^{\circ}$$ = $$\dfrac{AE}{CD}$$
    $$ \dfrac{AC}{25 + x} = \dfrac{1}{\sqrt{3}} $$
    $$AC = \dfrac{25 + x}{\sqrt3}$$

    Now, $$BE = AC$$

    $$\therefore$$ $$\sqrt3$$x = $$\displaystyle{\frac{25 + x}{\sqrt3}}$$
    $$ 3x = 25 + x $$
    $$2x = 25$$
    $$x = 12.5\ \text{m}$$
    $$\therefore$$ Height of the column $$= (25 + 12.5)\ \text{m} = 37.5\ \text{m}$$  

    So, option C is correct.

  • Question 8
    1 / -0
    An observer $$1.5$$ m tall is $$28.5$$ m away from a tower and the angle of elevation from the eye of the observer is $$45^o$$. The height of the tower is:
    Solution
    Let $$AB$$ be the observer and $$CD$$ be the tower also refer the given figure : 
    $$AC = BE = 28.5 m$$
    $$AB$$ =$$CE$$ =$$1.5$$ m,
    Let $$DE$$=$$ h$$ m

    $$\therefore$$ From right angled $$\triangle BED$$,
     tan 45$$^o=\displaystyle{\frac{DE}{BE} \Rightarrow 1 = \frac{h}{28.5}}$$ 
    $$h = 28.5 $$
    $$\therefore$$ Height of tower $$CD 
    $$= h + 1.5$$
    $$= 28.5 + 1.5$$
    $$= 30\ m$$

  • Question 9
    1 / -0
    The heights of the two poles are $$80$$ m and $$65$$ m. If the line joining their tops makes an angle of 45$$^o$$ with the horizontal line passing through their top, then the distance between the poles is ______.
    Solution
    Refer the figure:
    Let AB and CD be the poles of height 80 m and 65 m respectively. 
    Draw, DE $$\perp$$ AB then, $$\angle EDB = 45^o$$

    Now, $$EB = (AB - AE) = (80 - 65)$$m = $$15$$m.

    $$\therefore$$ cot 45$$^o$$ = $$\displaystyle{\frac{ED}{EB} \Rightarrow 1 = \frac{ED}{15} \Rightarrow ED = 15 m}$$

    $$\therefore AC = ED = 15$$ m.

    So, option B is correct.

  • Question 10
    1 / -0
    The angle of elevation of the top of a tower from a point on the ground $$30$$ m away fro the foot of the tower is 30$$^o$$. The height of the tower is _____.

    Solution
    AB = height of tower $$= h, \theta = 30^o, OA = 30$$ m
    $$\therefore$$$$\displaystyle{\frac{AB}{OA}}$$ = tan$$\theta$$ $$\Rightarrow$$ $$\displaystyle{\frac{1}{\sqrt3} = \frac{h}{30}}$$ $$\Rightarrow$$ h = 10$$\sqrt3$$
    $$\therefore$$ Height of the tower is 10$$\sqrt3$$ m. 

    So, option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now