Let $$H$$ be the height of the cloud from the point above $$h\text{ m}$$ from the lake surface.
Now the distance of the reflection from the lake surface be $$H+h \text{ m}$$
Now, In $$\triangle CDE,$$
$$\Rightarrow \tan { \alpha } =\dfrac { DE }{ CE } $$
$$\Rightarrow CE=\dfrac { DE }{ \tan { \alpha } } =\dfrac { H }{ \tan { \alpha } } \longrightarrow \left( 1 \right) $$
In $$\triangle CED',$$
$$\Rightarrow \tan { \beta } =\dfrac { ED' }{ CE } $$
$$\Rightarrow CE=\dfrac { ED' }{ \tan { \beta } } =\dfrac { H+2h }{ \tan { \beta } } \longrightarrow \left( 2 \right) $$
From equation $$ \left( 1 \right)\;\&\; \left( 2 \right),$$ we get
$$\Rightarrow \dfrac { H }{ \tan { \alpha } } =\dfrac { H+2h }{ \tan { \beta } } $$
$$\Rightarrow H\tan { \beta } =H\tan { \alpha } +2h\tan { \alpha } $$
$$\Rightarrow H\left( \tan { \beta } -\tan { \alpha } \right) =2h\tan { \alpha } $$
$$\Rightarrow H=\dfrac { 2h\tan { \alpha } }{ \tan { \beta } -\tan { \alpha } } $$
Now, height of the cloud above the lake surface
$$\Rightarrow H+h=\dfrac { 2h\tan { \alpha } }{ \tan { \beta } -\tan { \alpha } } +h$$
$$=\dfrac { 2h\tan { \alpha } +h\tan { \beta } -h\tan { \alpha } }{ \tan { \beta } -\tan { \alpha } } $$
$$=\dfrac { h\left( \tan { \alpha } +\tan { \beta } \right) }{ \tan { \beta } -\tan { \alpha } } $$
$$=h\left[ \dfrac { \dfrac { \sin { \alpha } }{ \cos { \alpha } } +\dfrac { \sin { \beta } }{ \cos { \beta } } }{ \dfrac { \sin { \beta } }{ \cos { \beta } } -\dfrac { \sin { \alpha } }{ \cos { \alpha } } } \right] $$
$$=h\left[ \dfrac { \dfrac { \sin { \alpha } \cos { \beta } +\cos { \alpha } \sin { \beta } }{ \cos { \alpha \cos { \beta } } } }{ \dfrac { \sin { \beta } \cos { \alpha } -\cos { \beta } \sin { \alpha } }{ \cos { \alpha \cos { \beta } } } } \right] $$
Hence, the answer is $$h\left[ \dfrac { \dfrac { \sin { \alpha } \cos { \beta } +\cos {
\alpha } \sin { \beta } }{ \cos { \alpha \cos { \beta } } } }{
\dfrac { \sin { \beta } \cos { \alpha } -\cos { \beta } \sin {
\alpha } }{ \cos { \alpha \cos { \beta } } } } \right]$$ $$=\displaystyle \frac{h \sin \left ( \alpha +\beta \right ) }{\sin \left (\beta -\alpha \right )}m$$