Self Studies

Some Applications of Trigonometry test - 42

Result Self Studies

Some Applications of Trigonometry test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    On walking $$x$$ meters, making an angle of $${30}^{o}$$ with the ground, to find a ball fallen in a valley, one can reach a depth of '$$y$$' meters below the ground, then
    Solution
    According to the given fig.
    $$\sin{30^{o}} =\cfrac{1}{2}$$
    $$\cfrac{y}{x}=\cfrac{1}{2}$$
    $$\therefore x=2y$$

  • Question 2
    1 / -0
    An observer 1.5 m tall is 28.5 m away from a tower. The angle of elevation of the top of the tower from his/her eyes has measure 45. What is the height of the tower?
    Solution
    We can form the above figure by given data
    $$\implies BD = CE = 1.5$$
    In $$\Delta ABC, \angle CBA=90^{o}$$
    $$\implies \tan 45^{o} = \dfrac{AB}{BC}$$
    $$\implies 1 = \dfrac{AB}{28.5}$$
    $$\implies AB = 28.5$$
    Now, $$h = AB + BD = 28.5 + 1.5 = 30$$
    Hence, height of the tower is $$30\ m$$

  • Question 3
    1 / -0
    A series of steps lead to a temple. The number of steps is 30. The height of each step is 20 cm. Then find the height of the temple from the base.
    Solution
    Number of steps $$= 30$$
    Height of each step $$= 20\ cm$$
    Thus, height of the temple $$= (30 \times 20) cm = 600\ cm = 6\ m$$
    Hence, the correct answer is $$6\ m$$
  • Question 4
    1 / -0
    When the length of the shadow of a pole is equal to the height of the pole, the angle of elevation of the Sun has measure of ................
    Solution
    Let $$AB=h$$ be the height of the pole.
    The shadow of a pole will form base $$BC$$ 
    Let $$\theta$$ be the angle of elevation. 
    According to the fig.
    $$\tan{\theta} =\cfrac{AB}{BC} $$
    $$\implies \tan{\theta}=\cfrac{h}{h} =1$$
    $$\implies \theta =\tan^{-1}(1)$$
    $$\implies \theta=45^{o}$$
    Hence, the angle elevation is $$45^{o}$$.

  • Question 5
    1 / -0
    In given figure, the minimum distance to reach from point "C" to point "A" will be ....................

    Solution
    $$tan A = \dfrac{BC}{AB}$$

    $$tan 60^o = \dfrac{BC}{a}$$

    $$BC = a   tan 60^o$$

    $$BC = \sqrt 3 a$$

    In $$\Delta ABC$$,

    Using Pythagoras theorem we get,

    $$AC^2 = AB^2 + BC^2$$

    $$AC^2 = a^2 + (\sqrt 3a)^2$$

    $$AC^2 = 4a^2$$

    $$AC = 2a$$
  • Question 6
    1 / -0
    From the top of a building of height $$h,$$ the angle of depression of an object on the ground is $$\theta.$$ What is the distance of the object from the foot of the building in terms of $$h$$ and $$\theta?$$
    Solution
    Let $$x$$ be the distance of the object from the foot of the building, we have

    $$\tan\theta =\dfrac { h }{ x }$$ 

    $$\Rightarrow x=h\cot\theta$$ 

    Hence, option $$A$$ is correct.

  • Question 7
    1 / -0
    The angle of elevation of a tower at a level ground is $$30^o$$ . The angle of elevation becomes $$\theta$$ when moved 10 m towards the tower. If the height of tower is $$ 5 \sqrt{3} m $$, then what is $$\theta$$ equal to ?
    Solution
    In $$\triangle ABC,$$
    $$\tan(30^{o})=\dfrac { 5\sqrt { 3 }  }{ 10+x } $$

    $$\Rightarrow \dfrac { 1 }{ \sqrt { 3 }  } =\dfrac { 5\sqrt { 3 }  }{ 10+x } $$
    $$\Rightarrow x+10=15$$
    $$\Rightarrow x=5$$

    In $$\triangle ADC,$$
    $$\tan(\theta )=\dfrac{5\sqrt{3}}{x}=\dfrac { 5\sqrt { 3 }  }{ 5 } =\sqrt { 3 }$$ 
    $$\Rightarrow \theta =60^{o}$$
    Hence, option B is correct.

  • Question 8
    1 / -0
    Two poles are 10 m and 20 m high. The line joining their tips makes an angle of $$15^o$$ with the horizontal. What is the  distance between the poles ?
    Solution
    Now AC will be the distance between the poles
    Here, 
    $$\tan(\frac { \theta  }{ 2 } )=\pm\sqrt { \dfrac { 1-cos\theta  }{ 1+cos\theta  }  } $$

    Now, $$\tan(15^{o})=\dfrac { 10 }{ AC } $$

    $$\Rightarrow AC=\dfrac { 10 }{\tan(15^{o})}$$ 

    But, $$\tan(15^{o})=\sqrt { \dfrac { 1-\cos(30^{o}) }{ 1+\cos(30^{o})}}$$ 

    $$=\sqrt { \dfrac { 1-\dfrac { \sqrt { 3 }  }{ 2 }  }{ 1+\dfrac { \sqrt { 3 }  }{ 2 }  }  } =\sqrt { \dfrac { 2-\sqrt { 3 }  }{ 2+\sqrt { 3 }  }  } =\sqrt { \dfrac { 2-\sqrt { 3 }  }{ 2+\sqrt { 3 }  } \times \dfrac { 2-\sqrt { 3 }  }{ 2-\sqrt { 3 }  }  } =2-\sqrt { 3 } $$

    So, $$AC=\dfrac { 10 }{ 2-\sqrt { 3 }  } =\dfrac { 10 }{ 2-\sqrt { 3 }  } \times \dfrac { 2+\sqrt { 3 }  }{ 2+\sqrt { 3 }  } =20+10\sqrt { 3 }  $$

  • Question 9
    1 / -0
    From an aeroplane above a straight road the angles of depression of two positions at a distance 20 m apart on the road are observed to be $$30^o$$ and $$45^o$$. The height of the aeroplane above the ground is :  
    Solution
    From the figure 
    $$ \cfrac { h }{ 20-x } =\tan { { 30 }^{ 0 } }$$ 
    $$ \cfrac { h }{ 20-x } =\cfrac { 1 }{ \sqrt { 3 }  }$$ 
    $$\sqrt { 3 } h=\quad 20-x$$ ....... $$(1)$$
    and $$\cfrac { h }{ x } =\tan { { 45 }^{ 0 } }$$ 
    $$h=x$$ ....... $$(2)$$
    From $$(1)$$ and $$(2)$$
    $$ \sqrt { 3 } h=20-h\\ \Rightarrow \cfrac { 20 }{ \sqrt { 3 } +1 } =h$$ 
    $$\Rightarrow h=10(\sqrt { 3 } -1)$$

  • Question 10
    1 / -0
    The angle of elevation of the top of a tower standing on a horizontal plane from two points on a line passing through the foot of the tower at distances $$49\ m$$ and $$36\ m$$ are $$43^{\circ}$$ and $$47^{\circ}$$ respectively. What is the height of the tower?
    Solution
    Let $$BD $$ be the tower
    In triangle $$ABD$$ 
    $$\tan A=\dfrac { BD }{ AB } \\ \Longrightarrow \tan 43^o=\dfrac { BD }{ 49} \\ \Longrightarrow BD=49 \tan43^o$$

    In triangle $$BDC$$

    $$\tan C=\dfrac { BD }{ BC } \\ \Longrightarrow \tan 47^o=\dfrac { BD }{ 36 } \\ \Longrightarrow BD= 36 \tan 47^o$$

    $$\Longrightarrow 36 \tan 47^o=49 \tan 43^o\\ \Longrightarrow \dfrac {\tan 47 ^o}{\tan 43^o } =\dfrac { 49 }{ 36 } \\ \Longrightarrow \dfrac {\tan 47^o}{\cot 47^o } =\dfrac { 49 }{ 36 } \\ \Longrightarrow {\tan }^{ 2 }47^o=\dfrac { 49 }{ 36 } \\ \Longrightarrow \tan 47^o=\dfrac { 7 }{ 6 }$$ 
    But $$BD=36\tan 47^o$$ 
    $$\Longrightarrow BD=36\times \dfrac{7}{6}\\=42m$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now