Self Studies

Some Applications of Trigonometry test - 44

Result Self Studies

Some Applications of Trigonometry test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two poles are $$10\ m$$ and $$20\,m$$ high. The line joining their tops makes an angle of $$15^\circ$$ with the horizontal. The distance between the poles is approximately equal to
    Solution

    Let $$AB$$ and $$CD$$ are two poles

    $$AB=10\ m$$ and $$CD=20\ m$$

    and $$\angle CAE=15^\circ$$


    Here $$CE=CD-ED$$

                     $$=20-10=10m$$

    In $$\triangle ACE,$$

    $$\Rightarrow \tan15^\circ=\cfrac{CE}{AE}$$

    $$\Rightarrow AE=\cfrac{10}{\tan15^\circ}$$

                 $$=\cfrac{10}{2-\sqrt3}=37.3\ m$$

    Therefore the distance between the two poles is $$37.3\  m$$

  • Question 2
    1 / -0
    A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is $${60}^{o}$$, when he retires $$40m$$ from the bank he finds the angle to $${30}^{o}$$. The breadth of river is
    Solution
    Let x be the breadth of the river
    In $$\triangle $$ ABC $$\tan { { 60 }^{ 0 } } =\cfrac { H }{ x } $$
    $$\sqrt { 3 } =\cfrac { H }{ x } $$
    $$H=\sqrt { 3 } x\longrightarrow 1$$
    In $$\triangle $$ DBE $$\tan { { 30 }^{ 0 } } =\cfrac { H }{ BE } $$
    $$\cfrac { 1 }{ \sqrt { 3 }  } =\cfrac { H }{ x+40 } $$
    $$\cfrac { 1 }{ \sqrt { 3 }  } =\cfrac { \sqrt { 3 } x }{ x+40 } $$ (From equation 1)
    $$3x=x+40$$
    $$2x=40$$
    $$x=20$$
    $$\therefore$$ Breadth of river is $$20m$$

  • Question 3
    1 / -0
    The angle of elevation of the top of a TV tower from three points $$A, B$$ and $$C$$ in a straight line through the foot of the tower are $$\alpha, 2\alpha$$ and $$2\alpha$$ respectively. If $$AB = a$$, the height of the tower is
    Solution
    Based on the given information, we can draw the figure shown above.
    Here, $$AB=a$$
    $$E$$ is the top of the TV tower 
    Let $$BD=x$$ and $$ED=h$$ be the height of the tower.

    We know that, $$\tan \theta=\dfrac{\text{Opposite Side}}{\text{Adjacent Side}}$$

    $$\therefore \ $$ In $$\Delta BDE,$$
     $$\tan 2\alpha =\dfrac { h }{ x } \\$$
    $$\Rightarrow x=\dfrac { h }{ \tan2\alpha  } \\$$

    Also, in $$\Delta ADE,$$ 
    $$\tan\alpha =\dfrac { h }{ a+x } \\$$
    $$\Rightarrow \tan\alpha =\dfrac { h }{ a +\dfrac { h }{ \tan2\alpha  }  }\\$$ 

    We know that, $$\tan2\theta=\dfrac{2\tan\theta}{1-\tan^2\theta}$$

    $$\therefore\  \tan\alpha =\dfrac { h }{ a +\dfrac { h(1-{ \tan }^{ 2 }\alpha ) }{ 2\tan\alpha  }  }$$

    $$\Rightarrow \tan\alpha =\dfrac { 2h\tan\alpha  }{ 2a  \tan\alpha +h-h{ \tan }^{ 2 }\alpha  }\\$$ 
    $$\Rightarrow h(1+{ \tan }^{ 2 }\alpha )=2a \tan\alpha\\$$ 
    $$\Rightarrow h=2a\sin\alpha \cos\alpha\\$$ 
    $$\Rightarrow h=a \sin2\alpha $$ ..... $$[\because \ \sin 2\theta=2\sin \theta\cos \theta]$$

    Hence, the height of the TV tower is $$a\sin2\alpha$$.

  • Question 4
    1 / -0
    The base of a cliff is circular. From the extremities of a diameter of the base, angles of elevation of the top of the cliff are $${ 30 }^{ \circ }$$ and $${ 60 }^{ \circ }$$. If the height of the cliff be $$500 \text{ m}$$, then the diameter of the base of the cliff is
    Solution
    In $$\triangle AEC$$,
    $$\tan { { 60 }^{ o } } =\dfrac { 500 }{ { d }_{ 1 } }$$
    $$ \Rightarrow \sqrt { 3 } =\dfrac { 500 }{ { d }_{ 1 } } $$
    $$\Rightarrow { d }_{ 1 }=\dfrac { 500 }{ \sqrt { 3 }  } \text{m}$$
    and in $$\triangle BEC$$,
    $$\tan { { 30 }^{ o } } =\dfrac { 500 }{ { d }_{ 2 } }$$
    $$ \Rightarrow { d }_{ 2 }=500\sqrt { 3 } \text{m}$$
    $$\therefore$$ Required diameter $$ ={ d }_{ 1 }+{ d }_{ 2 }$$
    $$=\dfrac { 500 }{ \sqrt { 3 }  } +500\sqrt { 3 } =\dfrac { 2000 }{ \sqrt { 3 }  } \text{m}$$

  • Question 5
    1 / -0
    A kite is flying with the string inclined at $${75}^{o}$$ to the horizon. If the length of the string is $$25 m$$, then height of the kite is :
    Solution
    Let H be the height of kite $$\therefore \sin  { 75 }^{ 0 }=\cfrac { H }{ 25 }  
     $$$$\sin { { 75 }^{ 0 } } =\sin { \left( { 45 }^{ 0 }+{ 30 }^{ ' } \right)  } $$
    $$\sin\ 75^o=\sin(30^o+45^o)\\=\sin { { 45 }^{ 0 } } \cos { { 30 }^{ 0 } } +\cos { { 45 }^{ 0 } } \sin { { 30 }^{ 0 }
    \\=\cfrac { 1 }{ \sqrt { 2 }  } \times { \sqrt { 3 }  }{ 2 } +\cfrac { 1 }{ \sqrt { 2 }  } \times { 1 }{ 2 }  }$$
    $$=\cfrac { \sqrt { 3 } +1 }{ 2\sqrt { 2 }  } $$
    Put value of $$\sin { { 75 }^{ 0 } } $$ in equation 1
    $$H=25\left[ \cfrac { \sqrt { 3 } +1 }{ 2\sqrt { 2 }  }  \right] $$
    $$H=\cfrac { 25 }{ 2 } \left[ \cfrac { \sqrt { 3 } +1 }{ \sqrt { 2 }  }  \right] $$

  • Question 6
    1 / -0
    From the top of a tower, the angle of depression of a point on the ground is $$60^o$$ . If the distance of this point from the tower is $$ \dfrac {1}{\sqrt{3}+1}$$ m, then the height of the tower is :
    Solution

    Let $$AC$$ be the height of the tower $$=h$$

    And $$BC$$ be the distance of the point from the tower $$=\dfrac{1}{\sqrt3+1}\ m$$
    Given $$\angle ABC=60^o$$

    In $$\triangle ABC,$$

    $$\tan 60^{o} = \dfrac {AC}{BC}$$

    $$\Rightarrow\sqrt3 = \dfrac {h}{\dfrac {1}{\sqrt{3}+1}}$$

    $$ \Rightarrow {\sqrt{3}} = \dfrac{h(\sqrt{3}+1)}{1} $$

    $$ \Rightarrow \dfrac {\sqrt{3}}{\sqrt{3}+1} = h$$

    $$ \Rightarrow h = \dfrac {\sqrt{3}}{\sqrt{3}+1} \times \dfrac {\sqrt{3}-1}{\sqrt3-1} $$

    $$ \Rightarrow h = \dfrac {\sqrt{3}(\sqrt{3}-1)}{3-1} = \dfrac {3 - \sqrt{3}}{2} $$

    So $$Op-C$$

  • Question 7
    1 / -0
    The angle of elevation of the top of a tower at a point on the ground is $$30^o$$. If on walking 20 m toward the tower, the angle of elevation becomes $$60^o$$, then the height of the tower is:
    Solution
    Let say $$h$$ be the height of the tower, $$x$$ be the initial distance and $$x+20$$ be the final distance away from the foot of the tower of the given point.

    Now using trigonometry for the above triangles, 
    $$ \tan 60^o = \dfrac{h}{x}  $$

    $${\sqrt{3}} = \dfrac{h}{x} $$

    $$ x=\dfrac{h}{{\sqrt{3}}} $$ .............. (1) 

    Also, $$ \tan 30^o = \dfrac{h}{20+x}  $$

    $$ \dfrac{1}{{\sqrt{3}}} = \dfrac{h}{20+x}  $$

    $$ \dfrac{1}{{\sqrt{3}}}\times \left ( 20+x \right ) = h  $$

    $$ \dfrac{1}{{\sqrt{3}}}\times \left ( 20+\dfrac{h}{\sqrt{3}} \right ) = h  $$       using eq. (1)

    $$20\sqrt 3 +h = 3h$$

    $$ h=10{\sqrt{3}} $$ 

    Ans will be option C.  

  • Question 8
    1 / -0
    A vertical pole $$PS$$ has two marks at $$Q$$ and $$R$$ such that the portions $$PQ, PR$$ and $$PS$$ subtend angles $$\alpha, \beta$$ and $$\gamma$$ at a point on the ground distance $$x$$ from the bottom of pole. If $$PQ = a, PR = b, PS = c$$ and  $$\alpha + \beta + \gamma = 180^{\circ}$$ then $$x^{2}$$ is equal to
    Solution
    We have $$\tan \alpha = \dfrac {a}{x}, \tan \beta = \dfrac {b}{x}$$ and $$\tan \gamma + \dfrac {c}{x}$$
    $$\therefore \alpha + \beta + \gamma = 180^{\circ}$$
    So, $$\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \cdot \tan \beta \cdot \tan \gamma$$
    or $$\dfrac {a}{x} + \dfrac {b}{x} + \dfrac {c}{x} = \dfrac {a}{x}\cdot \dfrac {b}{x}\cdot \dfrac {c}{x}$$
    or $$x^{2} = \dfrac {abc}{a + b + c}$$.

  • Question 9
    1 / -0
    The length of the shadows of a vertical pole of height $$h$$, thrown by the sun's rays at three different moments are $$h$$, $$2h$$ and $$3h$$. The sum of the angles of elevation of the rays at these three moments is equal to
    Solution
    Let $$OA$$ be the vertical pole of height $$h$$ and $$OP_1, OP_2$$ and $$OP_3$$ be the lengths of shadow.
    In $$\Delta$$ $$AOP_1$$, we have
    $$\tan\theta_1=\displaystyle\frac{OA}{OP_1}=\frac{h}{h}=1\Rightarrow \theta_1=\frac{\pi}{4}$$
    In $$\Delta AOP_2$$, we have
    $$\tan\theta_2=\displaystyle\frac{OA}{OP_2}=\frac{h}{2h}=\frac{1}{2}$$
    $$\theta_2=\tan^{-1}1/2$$
    Similarly, in $$\Delta AOP_3$$, we have
    $$\tan\theta_3=1/3$$
    $$\theta_3=\tan^{-1}(1/3)$$
    Therefore, sum of the angles of elevation of the eyes
    $$=\theta_1+\theta_2+\theta_3$$
    $$=\displaystyle\frac{\pi}{4}+\tan^{-1}\left(\displaystyle\frac{1}{2}\right)+\tan^{-1}\left(\displaystyle\frac{1}{3}\right)$$
    $$=\displaystyle\frac{\pi}{4}+\tan^{-1}\left(\displaystyle\frac{\displaystyle\frac{1}{2}+\frac{1}{3}}{1-\displaystyle\frac{1}{3}\times \frac{1}{2}}\right)$$     $$\left[\because \tan^{-1}x+\tan^{-1}y=\tan^{-1}\left(\dfrac{x+y}{1-xy}\right)\right]$$
    $$=\displaystyle\frac{\pi}{4}+\tan^{-1}\left(\displaystyle\frac{5/6}{5/6}\right)$$
    $$=\displaystyle\frac{\pi}{4}+\tan^{-1}(1)=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}$$

  • Question 10
    1 / -0
    The angle of elevation of the top of a tower from the top of a house is $${ 60 }^{ \circ }$$ and the angle of depression of its base is $${ 30 }^{ \circ }$$. If the horizontal distance between the house and the tower be $$12\ m$$, then the height of the tower is
    Solution
    Let $$AE$$ be the tower and $$BD$$ be the house with height $$h.$$

    In $$\triangle BDE,$$
    $$\tan { { 30 }^{ \circ } } =\dfrac { BD }{ DE }$$
    $$ \Rightarrow \dfrac { 1 }{ \sqrt { 3 }  }=\dfrac { h }{ 12 } $$
    $$\Rightarrow h=\dfrac { 12 }{ \sqrt { 3 }  }\ m $$

    In $$\triangle ACB,$$
    $$\tan { { 60 }^{ \circ } } =\dfrac { AC }{ BC }$$
    $$\Rightarrow \sqrt3 =\dfrac { H }{ 12 } $$
    $$\Rightarrow H=12\sqrt { 3 }\ m$$

    $$\therefore $$ Height of tower $$=H+h$$
                                    $$=12\sqrt { 3 } +\dfrac { 12 }{ \sqrt { 3 }  } $$
                                    $$=\dfrac{36+12}{\sqrt3}$$
                                    $$=\dfrac{48}{\sqrt3}$$
                                    $$=16\sqrt { 3 }\ m$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now