Let $$OQ$$ be the surface of lake ,$$P$$ be the point $$a$$ metre above the lake ,$$C$$ is the point where cloud is present at height $$H$$ and $$C'$$ is reflection of cloud under the lake.
In $$\quad \triangle PAC,\quad \tan { \alpha } =\cfrac { H-a }{ x } $$$$\Rightarrow x=(H-a)\cot { \alpha }$$ ....(i)
In $$\triangle PAC',\tan { \beta } =\cfrac { H+a }{ x } \quad $$
$$\Rightarrow x=(H+a)\cot { \beta }$$ ....(ii)
From equations $$(i)$$ and $$(ii)$$, we get
$$(H+a)\cot { \beta } =(H-a)\cot { \alpha } $$
$$H \cot {\beta} + a \cot {\beta} = H \cot {\alpha} -a\cot {\alpha} $$
$$H \cot {\alpha} -H\cot {\beta} = a\cot {\alpha} +a\cot {\beta} $$
$$\Rightarrow H=\cfrac { a(\cot { \alpha } +\cot { \beta } ) }{ \cot { \alpha } -\cot { \beta } }$$
$$\dfrac{\cot {\alpha}+\cot {\beta}}{\cot {\alpha}-\cot {\beta}}=\dfrac{\dfrac{\cos{\alpha}}{\sin{\alpha}}+\dfrac{\cos{\beta}}{\sin{\beta}}}{\dfrac{\cos{\alpha}}{\sin{\alpha}}-\dfrac{\cos{\beta}}{\sin{\beta}}}$$
$$=\dfrac{\cos{\alpha}\sin{\beta}+\cos{\beta}\sin{\alpha}}{\cos{\alpha}\sin{\beta}-\cos{\beta}\sin{\alpha}}=\cfrac { \sin { \left( \alpha +\beta \right) } }{ \sin { \left( \beta -\alpha \right) } }$$
$$\therefore H=\cfrac { a\sin { \left( \alpha +\beta \right) } }{ \sin { \left( \beta -\alpha \right) } } $$