Self Studies

Some Applications of Trigonometry test - 50

Result Self Studies

Some Applications of Trigonometry test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A vertical pole subtends an angle $$\tan^{-1}\dfrac{1}{2}$$ at point $$P$$ on the ground. The angle subtended by the upper half of the pole at the point $$P$$ is__
    Solution
     $$\angle ABP = 90^\circ $$ and $$\angle APB = ta{n^{ - 1}}\left( {\frac{1}{2}} \right)$$   (given)
    Let height of the pole be $$h$$
    In $$\Delta ABP$$
    $$\dfrac{{AB}}{{BP}} = \tan \left( {\angle APB} \right)$$
    $$ \Rightarrow \dfrac{h}{{BP}} = \tan \left( {{{\tan }^{ - 1}}\dfrac{1}{2}} \right)$$
    $$ \Rightarrow \dfrac{h}{{BP}} = \dfrac{1}{2}$$
    $$ \Rightarrow BP = 2h$$   ---(i)
    in $$\Delta DBP$$
    $$\dfrac{{DB}}{{BP}} = \tan \left( {\angle DPB} \right)$$
    $$ \Rightarrow \dfrac{{\dfrac{h}{2}}}{{2h}} = \tan \left( {\angle DPB} \right)$$  (from (i))
    $$ \Rightarrow \dfrac{h}{{4h}} = \tan \left( {\angle DPB} \right)$$
    $$ \Rightarrow \tan \left( {\angle DPB} \right) = \dfrac{1}{4}$$
    $$ \Rightarrow \angle DPB = {\tan ^{ - 1}}\left( {\dfrac{1}{4}} \right)$$
    Angle subtended by upper half of the pole at point $$P$$ $$ = \angle APD = \angle APB - \angle DPB = {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{4}} \right)$$
    $$ = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} - \dfrac{1}{4}}}{{1 + \dfrac{1}{2} \times \dfrac{1}{4}}}} \right)$$      $$[\because \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left(\dfrac{x-y}{1+xy}\right)]$$
    $$ = {\tan ^{ - 1}}\left( {\dfrac{2}{9}} \right)$$

  • Question 2
    1 / -0
    The height of a tower is $$50$$ m. When angle of elevation changes from $$45^o $$ to $$ 30^o$$, the shadow of tower becomes $$x$$ metres more, find the value of $$x$$.
  • Question 3
    1 / -0
    Find the angle of depression of a boat from the bridge at a horizontal distance of $$25$$m from the bridge, if the height of the bridge is $$25$$ m.
    Solution
    $$AB=BC=25m$$
    $$\angle B=90^o$$
    $$\angle BAC=\theta$$
    Now, in $$\triangle ABC$$
    $$\angle BAC=\angle DCA$$  (alternate angle)
    $$\Rightarrow \tan \theta=\cfrac {AB}{BC}$$
    $$\Rightarrow \tan\theta=1$$
    $$\theta=45^o$$  ($$\because \tan 45^0=1$$)

  • Question 4
    1 / -0
    From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a $$20\ meters$$ high building are $${45}^{o}$$ and $${60}^{o}$$ respectively. Then the height of the tower is
    Solution

  • Question 5
    1 / -0
    Two poles of equal heights are standing opposite each other on either side of the road which is $$80$$ m wide. From the points between them on the road, the  elevation of the top of the poles are $${60^ \circ }$$ and $${30^ \circ }$$ respectively. Find the height of the poles.
    Solution

    In $$\Delta DPC$$

    $$\tan p = {{CD} \over {CP}}$$

    $$\tan {30^0}$$

    $${1 \over {\sqrt 3 }} = {{CD} \over {CP}}$$

    $$CP = {{CP} \over {\sqrt 3 }}$$     (1)

    IN $$\Delta APB$$

    $$\tan p = {{AB} \over {PB}}$$

    $$\tan {60^0} = {{AB} \over {BP}}$$

    $$\sqrt 3 BP = AB$$

    $$CD = \sqrt 3 BP$$  (2)

    FROM (1)   & (2)

    $${{CP} \over {\sqrt 3 }} = \sqrt 3 BP$$

    $$CP = 3BP$$

    NOW ,$$BC = BP + CP$$

    $$80 = BP + 3BP$$

    $$BP = 20m$$

    $$CP = 60m$$

    $$CD = \sqrt 3 BP$$

    $$ = 20\sqrt 3 $$


  • Question 6
    1 / -0
    The angle of elevation of jet fighter from $$A$$ point on the ground is $$60^0$$. After a fight of $$15$$ seconds angle of elevation changes to $$30^0$$. If the jet is flying at a speed of $$720 $$ km/hr. Find the constant height at which jet is flying. (Take $$\sqrt3= 1.732$$).
    Solution
    speed=$$720\ km/h$$
    $$=720\times\cfrac{5}{18}=200m/s$$
    distance travelled in $$16 sec$$
    $$200\times15$$
    now
    $$\tan30^{\circ}=\cfrac{h}{x+3000}=\cfrac{1}{\sqrt{3}}$$     
    $$\tan60^{\circ}=\cfrac{h}{x}={\sqrt{3}}$$
    $$=\cfrac { \cfrac { h }{ x }  }{ \cfrac { h }{ x+3000 }  } =\cfrac { \sqrt { 3 }  }{ \cfrac { 1 }{ \sqrt { 3 }  }  } \\ =\cfrac { x+3000 }{ x } =3\\ =x+3000=3x=2x=3000\\ =x=1500$$
    The constant height$$=1500\sqrt{3}$$
                                     $$=1500\times1.732$$ 
                                     $$=2598m=2.598km$$

  • Question 7
    1 / -0
    The shadow of a vertical tower on a level ground increases by $$10$$ when the altitude of the sun changes from $$45^0$$ to $$30^0$$. Find the height of the tower, correct to two decimal places.
    Solution

    In $$\triangle ABC$$
    $$\tan45^o=\cfrac {x}{y}$$
    $$\Rightarrow x=y\longrightarrow (1)$$
    In $$\triangle ABD$$
    $$ \tan 30^o=\cfrac {x}{y+10}$$
    $$\Rightarrow \cfrac {1}{\sqrt {3}}=\cfrac {x}{x+10}$$  {from equation (1)}
    $$\Rightarrow x+10=\sqrt {3}x$$
    $$\Rightarrow x=\cfrac {10}{\sqrt {3}-1}$$   $$\because \sqrt{3}=1.732$$
    $$\Rightarrow x= 13.69m$$

  • Question 8
    1 / -0
    The height of the tower is $$50$$ m  when angle of elevation changes from $$45^0$$ to $$30^0$$, the shadow of tower becomes $$x$$ meters more, find the value of $$x$$.
    Solution
    let $$BC=y$$

    In $$\triangle ABC$$,
    $$\tan { { 30 }^{ \circ  } } $$ $$=\cfrac { 50 }{ y }$$

    $$\cfrac { 1 }{ \sqrt { 3 }  } =\cfrac { 50 }{ y } $$ $$\Rightarrow y=50\sqrt { 3 } $$

    In $$\triangle ABD$$,
    $$ \tan { { 45 }^{ \circ  } } =\cfrac { 50 }{ y+x } $$

    $$\Rightarrow 1=\cfrac { 50 }{ y+x } $$

    $$y+x=50 \ \Rightarrow x=50-y$$

    $$x=50-50\sqrt { 3 } $$

    $$x=50(1-\sqrt { 3 } )$$

  • Question 9
    1 / -0
    An aeroplane is moving one kilometer high from West to East horizontally. From a point on the ground the angle of elevation of the aeroplane is $${60}^{o}$$, and after $$10$$ seconds, the angle of elevation of the aeroplane is observed as $${30}^{o}$$, then the speed of the aeroplane in $$km/hour$$ is.
  • Question 10
    1 / -0
    A tower $${T_1}$$ of height 60 m is located exactly opposite to a tower $${T_2}$$ of height 80 m on a straight road. From the top of $${T_1}$$, if the angle of depression of foot of $${T_2}$$ is twice the angle of elevation of the top of $${T_2}$$ , then the width (in m) of the road between the feet of the towers $${T_1}$$ and $${T_1}$$ is:
    Solution
    We know, $$tan(\Theta ) = \dfrac {Opposite}{Adjacent}$$

    In $$\triangle ABC,\,\tan x = {{20} \over {AC}}$$

    In $$ \triangle ACD,\,\tan 2x = {{60} \over {AC}}$$

    $${\dfrac{2\tan x}  {1 - {{\tan }^{2}x}}} = {\dfrac{60} {AC}}$$   .............  Using, $$tan2A=\dfrac { 2tanA }{ 1-{ tan }^{ 2 }A }$$

    $${\dfrac {2 \times {\dfrac{20}  {AC}}} {1 - {\dfrac{400} {A{C^2}}}}} = {\dfrac{60} {AC}}$$

    $${\dfrac{40\,AC}  {A{C^2} - 400}} = {\dfrac{60}  {AC}}$$

    $$40A{C^2} = 60A{C^2} - 24000$$

    $$20A{C^2} = 24000$$

    $$A{C^2} = 1200$$

    $$AC = 20\sqrt 3 \,m$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now