$$\angle ABP = 90^\circ $$ and $$\angle APB = ta{n^{ - 1}}\left( {\frac{1}{2}} \right)$$ (given)
Let height of the pole be $$h$$
In $$\Delta ABP$$
$$\dfrac{{AB}}{{BP}} = \tan \left( {\angle APB} \right)$$
$$ \Rightarrow \dfrac{h}{{BP}} = \tan \left( {{{\tan }^{ - 1}}\dfrac{1}{2}} \right)$$
$$ \Rightarrow \dfrac{h}{{BP}} = \dfrac{1}{2}$$
$$ \Rightarrow BP = 2h$$ ---(i)
in $$\Delta DBP$$
$$\dfrac{{DB}}{{BP}} = \tan \left( {\angle DPB} \right)$$
$$ \Rightarrow \dfrac{{\dfrac{h}{2}}}{{2h}} = \tan \left( {\angle DPB} \right)$$ (from (i))
$$ \Rightarrow \dfrac{h}{{4h}} = \tan \left( {\angle DPB} \right)$$
$$ \Rightarrow \tan \left( {\angle DPB} \right) = \dfrac{1}{4}$$
$$ \Rightarrow \angle DPB = {\tan ^{ - 1}}\left( {\dfrac{1}{4}} \right)$$
Angle subtended by upper half of the pole at point $$P$$ $$ = \angle APD = \angle APB - \angle DPB = {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{4}} \right)$$
$$ = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} - \dfrac{1}{4}}}{{1 + \dfrac{1}{2} \times \dfrac{1}{4}}}} \right)$$ $$[\because \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left(\dfrac{x-y}{1+xy}\right)]$$
$$ = {\tan ^{ - 1}}\left( {\dfrac{2}{9}} \right)$$