Self Studies

Some Applications of Trigonometry test - 57

Result Self Studies

Some Applications of Trigonometry test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A vertical tower $$CP$$ subtends the same angle $$\theta$$, at point $$B$$ on the horizontal plane through $$C$$, the foot of the tower, and at point $$A$$ in the vertical plane. If the triangle $$ABC$$ is equilateral with length of each side equal to $$4m$$, then height of the tower is:
  • Question 2
    1 / -0
    $$n$$ poles standing at equal distances on a straight road subtend the same angle $$\alpha$$ at a point $$O$$ on the road. If the height of the largest pole is $$h$$ and the distance of the foot of the smallest pole from $$O$$ is $$a$$, the distance between two consecutive poles is:
    Solution
    $$\cfrac{h}{a+(n-1)x}=\cfrac{y}{a}\cdot y=a\tan \alpha$$
    or, $$\cfrac{h}{a+(n-1)x}=\cfrac{y}{a}\cdot y=\cfrac{a\tan\alpha}{a}$$
    or, $$\cfrac{h}{a+(n-1)x}=\cfrac{y}{a}\cdot y=\tan\alpha$$
    or, $$\cfrac{h}{\tan\alpha}=a+(n-1)x$$
    or, $$(n-1)x=h-a\tan\alpha$$
    or, $$x=\cfrac{h-a\tan\alpha}{(n-1)\times \tan\alpha}$$
    or,$$x=\cfrac{h\cos\alpha-a\sin\alpha}{(n-1)\cos\alpha\times \tan\alpha}$$
    or, $$x=\cfrac{h\cos\alpha-a\sin\alpha}{(n-1)\sin\alpha}$$
  • Question 3
    1 / -0
    A $$6$$ ft-tall man finds that the angle of elevation of the top of a $$24$$ ft-high pillar and the angle of depression of its base are complementary angles.The distance of the man from the pillar is
    Solution
    Let the distance between the tower and the man be x ft 
    $$\Rightarrow AP=CQ=x\ ft$$
    In rt $$\Delta BCQ$$
    $$\tan \alpha=\displaystyle \dfrac{18}{x}$$      ....(1)

    In rt $$\Delta ACQ$$
    $$\tan (90-\alpha)=\displaystyle \dfrac{6}{x}$$     
    $$\Rightarrow \cot \alpha=\displaystyle \dfrac{6}{x}$$      ....(2)

    Multiplying (1) and (2), we get
    $$\Rightarrow tan(\alpha)\times cot(\alpha)=\dfrac{18\times 6}{x\times x}$$
    $$\Rightarrow 1=\dfrac{18\times 6}{x^2}$$
    $$\Rightarrow x^2=36\times 3$$
    $$\Rightarrow x=\sqrt{36\times 3}$$
    $$\Rightarrow x=6\sqrt{3}\ ft$$

  • Question 4
    1 / -0
    A piece of paper in the shape of a sector of a circle of radius 10cm and of angle $$\displaystyle 216^{\circ}$$ just covers the lateral surface of a right circular cone of vertical angle$$\displaystyle  2\theta$$ .Then $$\displaystyle \sin\: \theta$$ is 
  • Question 5
    1 / -0
    At the foot of the mountain the elevation of its summit is $${ 45 }^{ 0 }$$; after ascending $$1000m$$ towards the mountain up a slope of $${ 30 }^{ 0 }$$ inclination, the elevation is found to be $${ 60 }^{ 0 }$$. The height of the mountain is
    Solution
    Let $$P$$ be the summit of the mountain and $$Q$$ be the foot.

    Let $$A$$ be the first position and $$B$$ the second position of observation.

    $$BN$$ and $$BM$$ are $$\bot$$s to $$PQ$$ and $$AQ$$ respectively.

    Then $$AB=1000m=1km$$,

    $$\angle MAB={ 30 }^{ 0 },\angle MAP={ 45 }^{ 0 },\angle NBP={ 60 }^{ 0 }$$

    Now, $$\angle BAP=\angle MAP-\angle MAB={ 45 }^{ 0 }-{ 30 }^{ 0 }={ 15 }^{ 0 }$$

    $$\angle APB=\angle APN-\angle BPN={ 45 }^{ 0 }-{ 30 }^{ 0 }={ 15 }^{ 0 }$$  .........$$[ \angle BNP = 90^{\circ}, \angle BPN = 90- 60=30^{\circ}]$$

    $$\therefore \triangle ABP$$ is isosceles and $$\therefore AB=BP$$

    But $$AB=1$$ kilometer, $$\therefore BP=1$$ kilometer

    Now $$PQ=PN+NQ=PN+BM$$

    $$=BP\sin { { 60 }^{ 0 } } +AB\sin { { 30 }^{ 0 } } $$   ......... $$ \because sin(\Theta ) = \dfrac {Opposite}{Hypotenuse} $$ for right $$\angle \triangle$$

    $$\displaystyle =1.\frac { \sqrt { 3 }  }{ 2 } +1.\frac { 1 }{ 2 } =\frac { \sqrt { 3 } +1 }{ 2 } m$$

    The height of the mountain is $$\dfrac { \sqrt { 3 } +1 }{ 2 } m$$.

  • Question 6
    1 / -0
    A man from the top of a $$100$$-metre-high tower sees a car moving towards the tower at an angle of depression of $$\displaystyle 30^{\circ}$$. After some time, the angle of depression becomes $$\displaystyle 60^{\circ}$$. The distance (in metres) travelled by the car during the time, is
    Solution
    In $$\Delta ABD$$
    $$\tan 60^{0}=\displaystyle \dfrac{100}{x}$$
    $$\Rightarrow x=\displaystyle \dfrac{100\sqrt{3}}{3} m$$

    In $$\Delta ABC$$
    $$\tan 30^{0}=\displaystyle \dfrac{100}{x+y}$$

    $$\Rightarrow \displaystyle \dfrac{1}{\sqrt{3}}=\dfrac{100\times3}{100\sqrt{3}+3y}$$

    $$\Rightarrow y=\displaystyle \dfrac{200\sqrt{3}}{3} m$$

  • Question 7
    1 / -0
    A vertical lamp-post, 6 m high, stands at a distance of 2 m from a wall, 4 m high. A 1.5-m-tall man starts to walk away from the wall on the other side of the wall, in line with the lamp-post.The maximum distance to which the man can walk remaining in the shadow is 
    Solution
    From similar $$\triangle ABQ$$ and $$\triangle CDQ$$, we get
    $$\cfrac { BR }{ DR } =\cfrac { AB }{ CD } =\cfrac { 4 }{ \cfrac { 3 }{ 2 }  } =\cfrac { 8 }{ 3 } $$   ...(1)
    Now, from similar $$\triangle PQR$$ and $$\triangle ABR$$, we get
    $$\cfrac { PQ }{ AB } =\cfrac { QR }{ BR } \Rightarrow \cfrac { 6 }{ 4 } =\cfrac { BQ+BR }{ BR } =\cfrac { 2+BR }{ BR } $$
    $$\Rightarrow BR=4$$   ...(2)
    Substituting (2) in (1), we get
    $$\cfrac { 4 }{ DR } =\cfrac { 8 }{ 3 } \Rightarrow DR=\cfrac { 3 }{ 2 } $$   ...(3)
    From (2) and (3)
    $$BD=BR-DR=4-\cfrac { 3 }{ 2 } =\cfrac { 5 }{ 2 } $$

  • Question 8
    1 / -0
    The angle of elevation of the top of a vertical pole when observed from each vertex of a regular hexagon is$$\displaystyle \frac{\pi}3$$. If the area of the circle circumscribing the hexagon be $$A\ \displaystyle m^{2},$$ then the area of the hexagon is
    Solution
    Let a be the side of the regular hexagon
    Now, for the equilateral triangle FOA, we have 
    $$OF=OA=AF=a$$
    Hence area of the circle $$\displaystyle A=\pi { a }^{ 2 }\Rightarrow a=\sqrt { \frac { A }{ \pi  }  } $$
    Now, area of the hexagon $$= \dfrac{3\sqrt3}2 a^2$$

                                                 $$=\dfrac{3\sqrt3}{2\pi}A\ m^2$$

  • Question 9
    1 / -0
    $$AB$$ is a vertical pole with base at $$B$$. A man finds the angle of elevation of the point $$A$$ from a certain point $$C$$ on the ground is $$60^{0}$$ . He move away from the pole along line $$BC$$ to a point $$D$$ such that $$CD= 7\:m$$ , from $$D$$ the angle of elevation of point $$A$$ is $$45^{0}$$ , then height of the pole is
    Solution
    Let $$AB=x$$ and $$BC=y$$
    In $$\triangle ABC\quad \tan 60=\cfrac { x }{ y } $$
    $$\Rightarrow y=\cfrac { x }{ \sqrt { 3 }  } $$  ..(1)
    And in $$\triangle ABD\quad \tan 45=\cfrac { x }{ y+7 } $$
    From (1)
    $$ x=y+7\\=\cfrac { x }{ \sqrt { 3 }  } +7$$
    $$\sqrt3x-x=7\sqrt3$$
    $$x=\dfrac{7\sqrt3}{\sqrt3-1}$$
    $$\Rightarrow x=\cfrac { 7\sqrt { 3 }  }{ 2 } \left( \sqrt { 3 } +1 \right) $$

  • Question 10
    1 / -0
    At the foot of the mountain the elevation of its summit is $${45}^{0}$$; after ascending $$1000\ m$$ towards the mountain up a slope of $${30}^{0}$$ inclination, the elevation is found to be $${60}^{0}$$. The height of the mountain is
    Solution
    Let $$P$$ be the summit of the mountain and $$Q$$ be the foot.
    Let $$A$$ be the first position and $$B$$ the second position of observation.
    $$BN$$ and $$BM$$ are perpendiculars from $$B$$ to $$PQ$$ and $$AQ$$ respectively.
    Then $$AB=1000 m=1 km$$
    $$\angle MAB={ 30 }^{ 0 };\angle MAP={ 45 }^{ 0 };\angle NBP={ 60 }^{ 0 }$$
    Now, $$\angle BAP=\angle MAP-\angle MAB={ 45 }^{ 0 }-{ 30 }^{ 0 }={ 15 }^{ 0 }$$
    $$\angle APB=\angle APN-\angle BPN={ 45 }^{ 0 }-{ 30 }^{ 0 }={ 15 }^{ 0 }$$
    $$\therefore \triangle ABP$$ is isosceles and $$\therefore AB=BP$$
    But $$AB=1$$ kilometer, $$\therefore BP=1$$ kilometer
    Now, $$PQ=PN+NQ=PN+BM$$
    $$=BP\sin { { 60 }^{ 0 } } +AB\sin { { 30 }^{ 0 } } $$
    $$\displaystyle =1.\frac { \sqrt { 3 }  }{ 2 } +1.\frac { 1 }{ 2 } =\frac { \sqrt { 3 } +1 }{ 2 } $$ $$km$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now